Skip to main content

Montmorillonite (MMt) Clay-Based Hybrid Materials for Textile Dyes’ Removal

  • Chapter
  • First Online:
Nanohybrid Materials for Treatment of Textiles Dyes

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 159 Accesses

Abstract

Montmorillonite (MMt) clay mineral is one of the most available and affordable nature-inspired materials in the worldwide which is a member of the layered silicate family. In addition to the reasonably priced and abundance of MMt in the nature, its mechanical and thermal stability and fire resistance features make it as a high promising compound for large-scale utilization. These features together with porous structure and great surface area can improve the performance of composite materials which are synthesized for the different environmental applications such as removal of dyes by the photocatalytic, adsorption, and degradation methods. To overcome the challenge of water remediation and removal of dyes, the design and fabrication of (nano)composites involving the various effective compounds, namely hybrid materials with symmetrical two-/three-dimensional structures, single molecular weight, adjustable size, presence of many cavities, high biocompatibility, and low toxicity, have been more interested in research works. Modified MMt or MMt-based (nano)composites provide more active sites, higher surface energy, high porosity, and stronger physical properties for the removal of dye applications. This chapter deals with the identification and qualification of MMt material modified with various polymers and monomers as hybrid/hydrogel (nano)composites for cationic and anionic textile dyes’ removal approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajkumar D, Kim JG (2006) Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J Hazard Mater 136(2):203–212

    Article  CAS  Google Scholar 

  2. Singh S, Barick K, Bahadur D (2013) Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater Nanotechnol 3:3–20

    Article  Google Scholar 

  3. Hillie T, Munasinghe M, Hlope M, Deraniyagala Y (2006) Nanotechnology, water and development. New Haven

    Google Scholar 

  4. Al Kausor M, Gupta S, Bhattacharyya KG, Chakrabortty D (2022) Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: a review on current status of the art. Inorg Chem Commun 143:109686

    Article  CAS  Google Scholar 

  5. Liu P, Zhang L (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58(1):32–39

    Article  CAS  Google Scholar 

  6. Zhao Y, Kang S, Qin L et al (2020) Self-assembled gels of fe-chitosan/montmorillonite nanosheets: dye degradation by the synergistic effect of adsorption and photo-fenton reaction. Chem Eng J 379:122322

    Article  CAS  Google Scholar 

  7. Malika M, Sonawane SS (2021) Statistical modelling for the ultrasonic photodegradation of rhodamine B dye using aqueous based Bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustain Energy Technol Assess 44:100980

    Google Scholar 

  8. Zhang T, Wang W, Zhao Y et al (2021) Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-composites. Chem Eng J 420:127574

    Article  CAS  Google Scholar 

  9. Yang Z, Yuan Z, Shang Z, Ye S (2020) Multi-functional membrane based on montmorillonite/graphene oxide nanocomposites with high actuating performance and wastewater purification. Appl Clay Sci 197:105781

    Article  CAS  Google Scholar 

  10. Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504

    Article  CAS  Google Scholar 

  11. Dong W, Ding J, Wang W et al (2020) Magnetic nano-hybrids adsorbents formulated from acidic leachates of clay minerals. J Clean Prod 256:120383

    Article  CAS  Google Scholar 

  12. Han H, Rafiq MK, Zhou T et al (2019) A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater 369:780–796

    Article  CAS  Google Scholar 

  13. Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. Dev Clay Sci 1:1–18

    Article  CAS  Google Scholar 

  14. Guggenheim S, Martin R (1995) Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner 43(2):255–256

    Article  CAS  Google Scholar 

  15. Kumar BS, Dhakshinamoorthy A, Pitchumani K (2014) K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal Sci Technol 4(8):2378–2396

    Article  CAS  Google Scholar 

  16. Swearingen C, Macha S, Fitch A (2003) Leashed ferrocenes at clay surfaces: potential applications for environmental catalysis. J Mol Catal A Chem 199(1–2):149–160

    Article  CAS  Google Scholar 

  17. Frenkel M (1974) Surface acidity of montmorillonites. Clays Clay Miner 22(5):435–441

    Article  CAS  Google Scholar 

  18. Miller RW, Gardiner DT (1958) Soils in our environment: Upper Saddle River, 10th edn. Prentice Hall PTR

    Google Scholar 

  19. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigm 51(1):25–40

    Article  CAS  Google Scholar 

  20. Shahadat M, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8(43):24571–24587

    Article  Google Scholar 

  21. Hu Q, Qiao S, Haghseresht F et al (2006) Adsorption study for removal of basic red dye using bentonite. Ind Eng Chem Res 45(2):733–738

    Article  CAS  Google Scholar 

  22. Pereira FA, Sousa KS, Cavalcanti GR et al (2017) Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. J Environ Chem Eng 5(4):3309–3318

    Article  CAS  Google Scholar 

  23. Thue PS, Sophia AC, Lima EC et al (2018) Synthesis and characterization of a novel organic-inorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions. J Clean Prod 171:30–44

    Article  CAS  Google Scholar 

  24. Chaari I, Fakhfakh E, Medhioub M, Jamoussi F (2019) Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J Mol Struct 1179:672–677

    Article  CAS  Google Scholar 

  25. Kalpaklı Y, Toygun Ş, Köneçoğlu G, Akgün M (2014) Equilibrium and kinetic study on the adsorption of basic dye (BY28) onto raw Ca-bentonite. Desalin Water Treat 52(37–39):7389–7399

    Article  Google Scholar 

  26. Amri N, Radji S, Ghemati D, Djamel A (2019) Studies on equilibrium swelling, dye adsorption, and dynamic shear rheology of polymer systems based on chitosan-poly(vinyl alcohol) and montmorillonite. Chem Eng Commun 206(6):716–730

    Article  CAS  Google Scholar 

  27. Preetha BK, Vishalakshi B (2020) Microwave assisted synthesis of karaya gum based montmorillonite nanocomposite: characterisation, swelling and dye adsorption studies. Int J Biol Macromol 154:739–750

    Article  CAS  Google Scholar 

  28. Santos S, França DB, Castellano LR et al (2020) Novel modified bentonites applied to the removal of an anionic azo-dye from aqueous solution. Colloids Surf A Physicochem Eng Asp 585:124152

    Article  CAS  Google Scholar 

  29. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  30. Freundlich H (1906) Over the adsorption in solution. J Phys chem 57(385471):1100–1107

    Google Scholar 

  31. Yuh-Shan H (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1):171–177

    Article  Google Scholar 

  32. Ho YS, McKay G (1999) Batch lead (II) removal from aqueous solution by peat: equilibrium and kinetics. Process Saf Environ Prot 77(3):165–173

    Article  CAS  Google Scholar 

  33. Zhu J, Tian M, Zhang Y et al (2015) Fabrication of a novel “loose” nanofiltration membrane by facile blending with chitosan-montmorillonite nanosheets for dyes purification. Chem Eng J 265:184–193

    Article  CAS  Google Scholar 

  34. Yang L, Wang Q, Rangel-Mendez JR et al (2020) Self-assembly montmorillonite nanosheets supported hierarchical MoS2 as enhanced catalyst toward methyl orange degradation. Mater Chem Phys 246:122829

    Article  CAS  Google Scholar 

  35. Hassan SA, Darwish AS, Gobara HM et al (2017) Interaction profiles in poly(amidoamine) dendrimer/montmorillonite or rice straw ash hybrids-immobilized magnetite nanoparticles governing their removal efficiencies of various pollutants in wastewater. J Mol Liq 230:353–369

    Article  CAS  Google Scholar 

  36. Benkhaya S, M’rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891

    Article  CAS  Google Scholar 

  37. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219

    Article  CAS  Google Scholar 

  38. Broadbent AD (2001) Basic principles of textile coloration, 1st edn. Society of Dyers and Colorists Bradford

    Google Scholar 

  39. Al-Sigeny S, Abou Taleb MF, El-Kelesh NA (2008) Hybrid nanocomposite prepared by graft copolymerization of 4-acryloyl morpholine onto chitosan in the presence of organophilic montmorillonite. J Macromol Sci A 46(1):74–82

    Article  Google Scholar 

  40. Karadağ E, Hasgül B, Kundakci S, Üzüm ÖB (2014) A study of polymer/clay hybrid composite sorbent‐based AAm/SMA hydrogels and semi‐IPNs composed of ɩ‐carrageenan and montmorillonite for water and dye sorption. Adv Polym Technol 33(4)

    Google Scholar 

  41. Wang Y, Xiong Y, Wang J, Zhang X (2017) Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf A Physicochem Eng Asp 520:903–913

    Article  CAS  Google Scholar 

  42. Luo J, Ma X, Zhou X, Xu Y (2021) Construction of physically crosslinked cellulose nanofibrils/alkali lignin/montmorillonoite/polyvinyl alcohol network hydrogel and its application in methylene blue removal. Cellulose 28(9):5531–5543

    Article  CAS  Google Scholar 

  43. Waiman CV, Chesta CA, Gómez ML (2016) Hybrid films based on a bridged silsesquioxane doped with goethite and montmorillonite nanoparticles as sorbents of wastewater contaminants. J Nanomater

    Google Scholar 

  44. Rahmani M, Dadvand Koohi A (2021) Adsorption of malachite green on the modified montmorillonite/xanthan gum-sodium alginate hybrid nanocomposite. Polym Bull 79:1–27

    Google Scholar 

  45. El-Sigeny S, Mohamed SK, Abou Taleb MF (2014) Radiation synthesis and characterization of styrene/acrylic acid/organophilic montmorillonite hybrid nanocomposite for sorption of dyes from aqueous solutions. Polym Compos 35(12):2353–2364

    Article  CAS  Google Scholar 

  46. Wu J, Lerner M (1993) Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers. Chem Mater 5(6):835–838

    Article  CAS  Google Scholar 

  47. Yao K, Song M, Hourston DJ, Luo DZ (2002) Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites. Polymer 43(3):1017–1020

    Article  CAS  Google Scholar 

  48. Usuki A, Tukigase A, Kato M-J (2002) Preparation and properties of EPDM–clay hybrids. Polymer 43(8):2185–2189

    Article  CAS  Google Scholar 

  49. Sun T, Garces JM (2002) High-performance polypropylene-clay nanocomposites by in-situ polymerization with metallocene/clay catalysts. Adv Mater 14(2):128–130

    Article  CAS  Google Scholar 

  50. Bermudez YH, Truffault L, Pulcinelli SH, Santilli CV (2018) Sodium montmorillonite/ureasil-poly(oxyethylene) nanocomposite as potential adsorbent of cationic dye. Appl Clay Sci 152:158–165

    Article  CAS  Google Scholar 

  51. Chabane L, Cheknane B, Zermane F et al (2017) Synthesis and characterization of reinforced hybrid porous beads: application to the adsorption of malachite green in aqueous solution. Chem Eng Res Des 120:291–302

    Article  CAS  Google Scholar 

  52. Olad A, Azhar FF (2014) Eco-friendly biopolymer/clay/conducting polymer nanocomposite: characterization and its application in reactive dye removal. Fibers Polym 15(6):1321–1329

    Article  CAS  Google Scholar 

  53. Silva M, Oliveira M, Avelino MC et al (2012) Adsorption of an industrial anionic dye by modified-KSF-montmorillonite: evaluation of the kinetic, thermodynamic and equilibrium data. Chem Eng J 203:259–268

    Article  CAS  Google Scholar 

  54. Ayazi Z, Khoshhesab ZM, Azhar FF, Mohajeri Z (2017) Modeling and optimization of adsorption removal of reactive orange 13 on the alginate–montmorillonite–polyaniline nanocomposite via response surface methodology. J Chin Chem Soc 64(6):627–639

    Article  CAS  Google Scholar 

  55. Lyu W, Li J, Trchová M et al (2022) Fabrication of polyaniline/poly (vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. J Hazard Mater 435:129004

    Article  Google Scholar 

  56. Huang P, Kazlauciunas A, Menzel R, Lin L (2017) Determining the mechanism and efficiency of industrial dye adsorption through facile structural control of organo-montmorillonite adsorbents. ACS Appl Mater Interfaces 9(31):26383–26391

    Article  CAS  Google Scholar 

  57. Huang P, Xia D, Kazlauciunas A et al (2019) Dye-mediated interactions in chitosan-based polyelectrolyte/organoclay hybrids for enhanced adsorption of industrial dyes. ACS Appl Mater Interfaces 11(12):11961–11969

    Article  CAS  Google Scholar 

  58. Zhang H, Ma J, Wang F et al (2020) Mechanism of carboxymethyl chitosan hybrid montmorillonite and adsorption of Pb(II) and congo red by CMC-MMT organic-inorganic hybrid composite. Int J Biol Macromol 149:1161–1169

    Article  CAS  Google Scholar 

  59. Muangrak W, Thouchprasitchai N, Phongboonchoo Y, Pongstabodee S (2020) Dual functional composite of montmorillonite-rich/chitosan (MCC) for decolorizing the water used in joss paper process: thermodynamic, isotherm, and kinetic studies. Appl Sci 10(21):7493

    Article  CAS  Google Scholar 

  60. Da Silva JC, França D, Rodrigues F et al (2021) What happens when chitosan meets bentonite under microwave-assisted conditions? Clay-based hybrid nanocomposites for dye adsorption. Colloids Surf A Physicochem Eng Asp 609:125584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Jaleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaleh, B., Shabanlou, E., Nasri, A., Eslamipanah, M. (2023). Montmorillonite (MMt) Clay-Based Hybrid Materials for Textile Dyes’ Removal. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B. (eds) Nanohybrid Materials for Treatment of Textiles Dyes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3901-5_11

Download citation

Publish with us

Policies and ethics