Skip to main content

Introduction of Nanohybrid Materials

  • Chapter
  • First Online:
Nanohybrid Materials for Treatment of Textiles Dyes

Abstract

Nanohybrid materials get their name from the fact that they are composed of synthetic organic and inorganic parts that are linked at the nanoscale in either a covalent or non-covalent fashion. The chemical reactivity of the organic base material is increased as a result of the contribution of the inorganic groups, which serve as functional groups. The development of these materials is currently at the forefront of a cutting-edge field that merges nanotechnology, material science, and life sciences. This is a multidisciplinary field that is also on the cutting edge of technological advancement. The nanoscale size, structure, form, and surface chemistry of the hybrid material all contribute to an increase in its already impressive multifunctionality. This is due to the fact that the ratio of the surface area of the material to its volume is increasing, which in turn causes the atoms on the material’s surface to have a greater influence on the performance of the material. Because they are so much smaller than the bulk material, nanoparticles have a surface area-to-volume ratio that is significantly higher than that of the bulk material. This is because surface area contributes more to the total volume of a substance. Because of this quality of nanohybrid materials, it is possible for them to have unexpected optical, physical, and chemical properties. This property is made possible due to the fact that nanohybrid materials are small enough to produce quantum effects and trap their electrons within their own structures. Intelligent, integrated nanohybrid agents are of particular interest because of the increased functionality, target selectivity, and applicability that they offer. In recent times, there has been a lot of focus placed on the development of innovative strategies for the synthesis and characterization of nanohybrid materials. This chapter provides a concise overview of the concept of nanohybrid materials, as well as a discussion of the numerous types of these materials, the benefits they offer, and the applications they can have in a wide variety of industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saba N, Alothman OY, Almutairi Z, Jawaid M, Asad M (2019) Introduction of graphene-based nanotechnologies. Graphene-Based Nanotechnol Energy Environ Appl 3–21.https://doi.org/10.1016/B978-0-12-815811-1.00001-6

  2. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  3. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174. https://doi.org/10.1016/j.jddst.2019.101174

    Article  CAS  Google Scholar 

  4. Shaikh SF, Shinde NM, Lee D, Al-Enizi AM, Kim KH, Mane RS (2019) Nanostructures in dye-sensitized and perovskite solar cells. Nanostructures. IntechOpen. https://doi.org/10.5772/intechopen.85699

  5. Li Z, Hu J, Yang L, Zhang X, Liu X, Wang Z, Li Y (2020) Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. Nanoscale 12(21):11395–11415. https://doi.org/10.1039/D0NR02394A

    Article  CAS  Google Scholar 

  6. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  7. Shin WK, Cho J, Kannan AG, Lee YS, Kim DW (2016) Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep26332

    Article  CAS  Google Scholar 

  8. Ganesh M, Hemalatha P, Peng MM, Jang HT (2017) One pot synthesized Li, Zr doped porous silica nanoparticle for low temperature CO2 adsorption. Arab J Chem 10:S1501–S1505. https://doi.org/10.1016/j.arabjc.2013.04.031

    Article  CAS  Google Scholar 

  9. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44(10):893–902. https://doi.org/10.1021/ar2000259

    Article  CAS  Google Scholar 

  10. Khan I, Yamani ZH, Qurashi A (2017) Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason Sonochem 34:484–490. https://doi.org/10.1016/j.ultsonch.2016.06.025

    Article  CAS  Google Scholar 

  11. Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed: Nanotechnol Biol Med 12(3):701–710. https://doi.org/10.1016/j.nano.2015.11.005

  12. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650. https://doi.org/10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  13. Nicole L, Laberty-Robert C, Rozes L, Sanchez C (2014) Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale 6(12):6267–6292. https://doi.org/10.1039/C4NR01788A

    Article  CAS  Google Scholar 

  14. Fahmi A, Pietsch T, Mendoza C, Cheval N (2009) Functional hybrid materials. Mater Today 12(5):44–50. https://doi.org/10.1016/S1369-7021(09)70159-2

    Article  CAS  Google Scholar 

  15. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Nicole L (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C R Chim 13(1–2):3–39. https://doi.org/10.1016/j.crci.2009.06.001

    Article  CAS  Google Scholar 

  16. Sanchez C, Boissiere C, Cassaignon S, Chanéac C, Durupthy O, Faustini M, Sassoye C (2014) Molecular engineering of functional inorganic and hybrid materials. Chem Mater 26(1):221–238. https://doi.org/10.1021/cm402528b

    Article  CAS  Google Scholar 

  17. Kickelbick G (2014) Hybrid materials–past, present and future. Hybrid Mater 1(1):39–51. https://doi.org/10.2478/hyma-2014-0001

    Article  Google Scholar 

  18. Hood MA, Mari M, Muñoz-Espí R (2014) Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 7(5):4057–4087. https://doi.org/10.3390/ma7054057

    Article  Google Scholar 

  19. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592. https://doi.org/10.1039/B509097K

    Article  CAS  Google Scholar 

  20. Cui J, Jia S (2017) Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord Chem Rev 352:249–263. https://doi.org/10.1016/j.ccr.2017.09.008

    Article  CAS  Google Scholar 

  21. Chauhan BP (ed) (2011) Hybrid nanomaterials: synthesis, characterization, and applications. Wiley

    Google Scholar 

  22. Meroni D, Ardizzone S (2018) Preparation and application of hybrid nanomaterials. Nanomaterials 8(11). https://doi.org/10.3390/nano8110891

  23. Gamage A, Punniamoorthy T, Madhujith T (2022) Starch-based hybrid nanomaterials for environmental remediation. In: Starch: evolution and recent advances, vol 4, no 171. https://doi.org/10.5772/intechopen.101697

  24. Ruiz-Hitzky E, Darder M, Aranda P (2008) An introduction to bio-nanohybrid materials. Bio-inorg Hybrid Nanomaterials 1–40.https://doi.org/10.1039/b509097k

  25. Gleitsmann T, Bernhardt TM, Wöste L (2006) Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix. Appl Phys A 82(1):125–130. https://doi.org/10.1007/s00339-005-3372-4

    Article  CAS  Google Scholar 

  26. Nguyen TP, Yang SH (2018) Hybrid materials based on polymer nanocomposites for environmental applications. In: Polymer-based nanocomposites for energy and environmental applications. Woodhead Publishing, pp 507–551. https://doi.org/10.1016/B978-0-08-102262-7.00019-2

  27. Gopalan Nair K, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842. https://doi.org/10.1021/bm030058g

  28. Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 14(12):3295–3303. https://doi.org/10.1039/C2GC35933B

    Article  CAS  Google Scholar 

  29. Parvathy G, Sethulekshmi AS, Jayan JS, Raman A, Saritha A (2021) Lignin based nano-composites: synthesis and applications. Process Saf Environ Prot 145:395–410. https://doi.org/10.1016/j.psep.2020.11.017

    Article  CAS  Google Scholar 

  30. Vilela C, Pinto RJB, Pinto S, Marques P, Silvestre A, Barros CSDRF (2018) Polysaccharide based hybrid materials: metals and metal oxides, graphene and carbon nanotubes. Springer. https://doi.org/10.1007/978-3-030-00347-0_1

    Article  Google Scholar 

  31. Russo T, Fucile P, Giacometti R, Sannino F (2021) Sustainable removal of contaminants by biopolymers: a novel approach for wastewater treatment. Current state and future perspectives. Processes 9(4):719. https://doi.org/10.3390/pr9040719

    Article  CAS  Google Scholar 

  32. Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32. https://doi.org/10.1016/j.carres.2014.07.016

    Article  CAS  Google Scholar 

  33. Arora B, Bhatia R, Attri P (2018) Bionanocomposites: green materials for a sustainable future. In: New polymer nanocomposites for environmental remediation. Elsevier, pp 699–712. https://doi.org/10.1016/B978-0-12-811033-1.00027-5

  34. Bilal M, Gul I, Basharat A, Qamar SA (2021) Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 176:540–557. https://doi.org/10.1016/j.ijbiomac.2021.02.107

    Article  CAS  Google Scholar 

  35. Wen Y, Oh JK (2014) Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun 35(21):1819–1832. https://doi.org/10.1002/marc.201400406

    Article  CAS  Google Scholar 

  36. Kotharangannagari VK, Krishnan K (2016) Biodegradable hybrid nanocomposites of starch/lysine and ZnO nanoparticles with shape memory properties. Mater Des 109:590–595. https://doi.org/10.1016/j.matdes.2016.07.046

    Article  CAS  Google Scholar 

  37. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  38. Saito R, Dresselhaus G, Dresselhaus MS (1999) Physical properties of carbon nanotubes. Imperial College, Singapore, 1998 (C. Google Scholar C. Dekker, Phys. Today)

    Google Scholar 

  39. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng: R: Rep 53(3–4):73–197. https://doi.org/10.1016/j.mser.2006.06.001

    Article  CAS  Google Scholar 

  40. Rejab MRBM, Hamdan MHBM, Quanjin M, Siregar JP, Bachtiar D, Muchlis Y (2020) Historical development of hybrid materials. Mat Sci Mat Eng 4:445–455. https://doi.org/10.1016/B978-0-12-803581-8.10546-6

    Article  Google Scholar 

  41. Abd-Elsalam KA (2020) Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems: a note from the editor. In: Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems. Elsevier, pp 1–19. https://doi.org/10.1016/B978-0-12-821354-4.00001-7

  42. Liu LH, Métivier R, Wang S, Wang H (2012) Advanced nanohybrid materials: surface modification and applications modification and applications.https://doi.org/10.1155/2012/536405

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiruppathi Krithika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krithika, T., Iswarya, T., Sowndarya, T. (2023). Introduction of Nanohybrid Materials. In: Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B. (eds) Nanohybrid Materials for Treatment of Textiles Dyes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3901-5_1

Download citation

Publish with us

Policies and ethics