Skip to main content

Eosinophilic Disorders and Systemic Mastocytosis

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia
  • 444 Accesses

Abstract

Eosinophilic disorders are a group of rare and highly heterogenous diseases distinguished by increased eosinophil counts and may be associated with end-organ damage. In this chapter, the diagnostic algorithm and management of eosinophilic disorders are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shomali W, Gotlib J. World Health Organization-defined eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am J Hematol. 2019;94(10):1149–67.

    PubMed  Google Scholar 

  2. Leru PM. Eosinophilic disorders: evaluation of current classification and diagnostic criteria, proposal of a practical diagnostic algorithm. Clin Transl Allergy. 2019;9(1):36.

    PubMed  PubMed Central  Google Scholar 

  3. Valent P, Klion AD, Horny HP, Roufosse F, Gotlib J, Weller PF, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol. 2012;130(3):607–12.e9.

    PubMed  PubMed Central  Google Scholar 

  4. Crane MM, Chang CM, Kobayashi MG, Weller PF. Incidence of myeloproliferative hypereosinophilic syndrome in the United States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol. 2010;126(1):179–81.

    PubMed  PubMed Central  Google Scholar 

  5. Roufosse F, Weller PF. Practical approach to the patient with hypereosinophilia. J Allergy Clin Immunol. 2010;126(1):39–44.

    PubMed  PubMed Central  Google Scholar 

  6. Gotlib J, Cools J. Five years since the discovery of FIP1L1–PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22(11):1999–2010.

    CAS  PubMed  Google Scholar 

  7. Lambert F, Heimann P, Herens C, Chariot A, Bours V. A case of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia with a rare FIP1L1 breakpoint. J Mol Diagn. 2007;9(3):414–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704–14.

    CAS  PubMed  Google Scholar 

  9. Vandenberghe P, Wlodarska I, Michaux L, Zachée P, Boogaerts M, Vanstraelen D, et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia. 2004;18(4):734–42.

    CAS  PubMed  Google Scholar 

  10. Mandelker D, Dal Cin P, Jacene HA, Armand P, Stone RM, Lindeman NI. Refractory myeloid sarcoma with a FIP1L1-PDGFRA rearrangement detected by clinical high throughput somatic sequencing. Exp Hematol Oncol. 2015;4(1):30.

    PubMed  PubMed Central  Google Scholar 

  11. Metzgeroth G, Schwaab J, Naumann N, Jawhar M, Haferlach T, Fabarius A, et al. Treatment-free remission in FIP1L1-PDGFRA–positive myeloid/lymphoid neoplasms with eosinophilia after imatinib discontinuation. Blood Adv. 2020;4(3):440–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Metzgeroth G, Walz C, Score J, Siebert R, Schnittger S, Haferlach C, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21(6):1183–8.

    CAS  PubMed  Google Scholar 

  13. Zota V, Miron PM, Woda BA, Raza A, Wang SA. Eosinophilia with FIP1L1-PDGFRA fusion in a patient with chronic myelomonocytic leukemia. J Clin Oncol. 2008;26(12):2040–1.

    PubMed  Google Scholar 

  14. Chaudhary LN, Bailey NG, Vos JA, Stotler CJ. Unique association of myeloid neoplasm with eosinophilia and abnormalities of PDGFRA with TTP. W V Med J. 2013;109:6+.

    PubMed  Google Scholar 

  15. Alshehri H, Alnomani M, Alghamdi M, Motabi I, Tailor I, Alshehry N, et al. An intriguing case of eosinophilia with FIP1L1/PDGFRA rearrangement who presented as thrombotic thrombocytopenic purpura. Case Rep Hematol. 2019;2019:2820954.

    PubMed  PubMed Central  Google Scholar 

  16. Andrei M, Bandarchuk A, Abdelmalek C, Kundra A, Gotlieb V, Wang JC. PDGFRβ-rearranged myeloid neoplasm with marked eosinophilia in a 37-year-old man; and a literature review. Am J Case Rep. 2017;18:173–80.

    PubMed  PubMed Central  Google Scholar 

  17. Steer EJ, Cross NCP. Myeloproliferative disorders with translocations of chromosome 5q31–35: role of the platelet-derived growth factor receptor beta. Acta Haematol. 2002;107(2):113–22.

    CAS  PubMed  Google Scholar 

  18. Curtis CE, Grand FH, Waghorn K, Sahoo TP, George J, Cross NCP. A novel ETV6-PDGFRB fusion transcript missed by standard screening in a patient with an imatinib responsive chronic myeloproliferative disease. Leukemia. 2007;21(8):1839–41.

    CAS  PubMed  Google Scholar 

  19. Yamazaki M, Nakaseko C, Takeuchi M, Ozawa S, Ishizuka Y, Hatanaka Y, et al. Myeloid/lymphoid neoplasm with PDGFRB rearrangement with t (5;10) (q33;q22) harboring a novel breakpoint of the CCDC6-PDGFRB fusion gene. Intern Med. 2019;58(23):3449–53.

    PubMed  PubMed Central  Google Scholar 

  20. Cheah CY, Burbury K, Apperley JF, Huguet F, Pitini V, Gardembas M, et al. Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood. 2014;123(23):3574–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Mi X, Gadde R, Gao Q, Xiao W, Zhang Y, et al. FGFR1 rearrangement guides diagnosis and treatment of a Trilineage B, T, and myeloid mixed phenotype acute leukemia. JCO Precis Oncol. 2020;4:937–43.

    Google Scholar 

  22. Chen J, Deangelo DJ, Kutok JL, Williams IR, Lee BH, Wadleigh M, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci U S A. 2004;101(40):14479–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chase A, Bryant C, Score J, Cross NC. Ponatinib as targeted therapy for FGFR1 fusions associated with the 8p11 myeloproliferative syndrome. Haematologica. 2013;98(1):103–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren M, Qin H, Ren R, Cowell JK. Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities. Leukemia. 2013;27(1):32–40.

    CAS  PubMed  Google Scholar 

  25. Khodadoust MS, Luo B, Medeiros BC, Johnson RC, Ewalt MD, Schalkwyk AS, et al. Clinical activity of ponatinib in a patient with FGFR1-rearranged mixed-phenotype acute leukemia. Leukemia. 2016;30(4):947–50.

    CAS  PubMed  Google Scholar 

  26. Kreil S, Adès L, Bommer M, Stegelmann F, Ethell ME, Lubking A, et al. Limited efficacy of ponatinib in myeloproliferative neoplasms associated with FGFR1 fusion genes. Blood. 2015;126(23):2812.

    Google Scholar 

  27. Verstovsek S, Vannucchi AM, Rambaldi A, Gotlib JR, Mead AJ, Hochhaus A, et al. Interim results from fight-203, a phase 2, open-label, multicenter study evaluating the efficacy and safety of pemigatinib (INCB054828) in patients with myeloid/lymphoid neoplasms with rearrangement of fibroblast growth factor receptor 1 (FGFR1). Blood. 2018;132(Supplement 1):690.

    Google Scholar 

  28. Kasbekar M, Nardi V, Dal Cin P, Brunner AM, Burke M, Chen Y-B, et al. Targeted FGFR inhibition results in a durable remission in an FGFR1-driven myeloid neoplasm with eosinophilia. Blood Adv. 2020;4(13):3136–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang G, Sydney Sir Philip JK, Weinberg O, Tam W, Sadigh S, Lake JI, et al. Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. Mod Pathol. 2019;32(4):490–8.

    CAS  PubMed  Google Scholar 

  30. Chamseddine AN, Etancelin P, Penther D, Parmentier F, Kuadjovi C, Camus V, et al. Transformation of an unclassified myeloproliferative neoplasm with a rare BCR-JAK2 fusion transcript resulting from the translocation (9;22)(p24;q11). Case Rep Hematol. 2015;2015:252537.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kantarcioglu B, Kaygusuz-Atagunduz I, Uzay A, Toptas T, Tuglular TF, Bayik M. Myelodysplastic syndrome with t(9;22)(p24;q11.2), a BCR-JAK2 fusion: case report and review of the literature. Int J Hematol. 2015;102(3):383–7.

    PubMed  Google Scholar 

  32. Dias DF, Bellesso M, Santucci R, Elias RC, Oliveira VR, Centrone R, et al. Myeloproliferative neoplasm with BCR-JAK2 fusion gene as the result of t(9;22)(p24,11.2) in a Brazilian patient. Blood. 2012;120(21):4808.

    Google Scholar 

  33. Bellesso M, Santucci R, Dias DF, Centrone R, Elias RC. Atypical chronic myeloid leukemia with t(9;22)(p24,11.2), a BCR-JAK2 fusion gene. Rev Bras Hematol Hemoter. 2013;35:218–9.

    PubMed  PubMed Central  Google Scholar 

  34. Elnaggar MM, Agersborg S, Sahoo T, Girgin A, Ma W, Rakkhit R, et al. BCR-JAK2 fusion as a result of a translocation (9;22)(p24;q11.2) in a patient with CML-like myeloproliferative disease. Mol Cytogenet. 2012;5(1):23.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwaab J, Knut M, Haferlach C, Metzgeroth G, Horny H-P, Chase A, et al. Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann Hematol. 2015;94(2):233–8.

    CAS  PubMed  Google Scholar 

  36. He R, Greipp PT, Rangan A, Mai M, Chen D, Reichard KK, et al. BCR-JAK2 fusion in a myeloproliferative neoplasm with associated eosinophilia. Cancer Genet. 2016;209(5):223–8.

    CAS  PubMed  Google Scholar 

  37. Morsia E, Reichard K, Pardanani A, Tefferi A, Gangat N. WHO defined chronic eosinophilic leukemia, not otherwise specified (CEL, NOS): a contemporary series from the Mayo Clinic. Am J Hematol. 2020;95(7):E172–E4.

    PubMed  Google Scholar 

  38. Wang SA, Hasserjian RP, Tam W, Tsai AG, Geyer JT, George TI, et al. Bone marrow morphology is a strong discriminator between chronic eosinophilic leukemia, not otherwise specified and reactive idiopathic hypereosinophilic syndrome. Haematologica. 2017;102(8):1352–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sa AW, Robert PH, Wayne T, Albert GT, Julia TG, Tracy IG, et al. Bone marrow morphology is a strong discriminator between chronic eosinophilic leukemia, not otherwise specified and reactive idiopathic hypereosinophilic syndrome. Haematologica. 2017;102(8):1352–60.

    Google Scholar 

  40. Helbig G, Soja A, Bartkowska-Chrobok A, Kyrcz-Krzemień S. Chronic eosinophilic leukemia-not otherwise specified has a poor prognosis with unresponsiveness to conventional treatment and high risk of acute transformation. Am J Hematol. 2012;87(6):643–5.

    PubMed  Google Scholar 

  41. Schwaab J, Umbach R, Metzgeroth G, Naumann N, Jawhar M, Sotlar K, et al. KIT D816V and JAK2 V617F mutations are seen recurrently in hypereosinophilia of unknown significance. Am J Hematol. 2015;90(9):774–7.

    CAS  PubMed  Google Scholar 

  42. Pardanani A, Lasho T, Wassie E, Finke C, Zblewski D, Hanson CA, et al. Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia. 2016;30(9):1924–6.

    CAS  PubMed  Google Scholar 

  43. Valent P, Degenfeld-Schonburg L, Sadovnik I, Horny HP, Arock M, Simon HU, et al. Eosinophils and eosinophil-associated disorders: immunological, clinical, and molecular complexity. Semin Immunopathol. 2021;43:1–16.

    Google Scholar 

  44. Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129(11):1420–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pardanani A. Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am J Hematol. 2019;94(3):363–77.

    PubMed  Google Scholar 

  46. Lim KH, Tefferi A, Lasho TL, Finke C, Patnaik M, Butterfield JH, et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood. 2009;113(23):5727–36.

    CAS  PubMed  Google Scholar 

  47. Pardanani A, Shah S, Mannelli F, Elala YC, Guglielmelli P, Lasho TL, et al. Mayo alliance prognostic system for mastocytosis: clinical and hybrid clinical-molecular models. Blood Adv. 2018;2(21):2964–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tefferi A, Shah S, Reichard KK, Hanson CA, Pardanani A. Smoldering mastocytosis: survival comparisons with indolent and aggressive mastocytosis. Am J Hematol. 2019;94(1):E1–2.

    PubMed  Google Scholar 

  49. Food and Drug Administration. FDA approves avapritinib for advanced systemic mastocytosis. 2021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gill, H., Yung, Y., Chu, C., Yip, A. (2023). Eosinophilic Disorders and Systemic Mastocytosis. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics