Skip to main content

Thrombosis and Myeloproliferative Neoplasms

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia
  • 444 Accesses

Abstract

BCR-ABL-negative myeloproliferative neoplasms (MPNs) are acquired hematological diseases characterized by the proliferation of fully mature and functional blood cells including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The occurrence of arterial or venous thrombosis is a major risk during these diseases. The currently accepted risk factors are an age over 60 years and a history of thrombosis. However, many complex mechanisms contribute to this increased prothrombotic risk, involving all blood cells, plasma factors, and the endothelial compartment. In recent years, new pathophysiological mechanisms have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James C, Ugo V, Le Couédic J-P, Staerk J, Delhommeau F, Bennaceur-Griscelli A, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(5):1144–8.

    CAS  PubMed  Google Scholar 

  2. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet. 2005;365(9464):1054–61.

    CAS  Google Scholar 

  3. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    CAS  PubMed  Google Scholar 

  4. Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    CAS  PubMed  Google Scholar 

  5. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.

    CAS  PubMed  Google Scholar 

  8. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. Sawyers C, éditeur. PLoS Med. 2006; 3(7): e270.

    Google Scholar 

  9. Rungjirajittranon T, Owattanapanich W, Ungprasert P, Siritanaratkul N, Ruchutrakool T. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer. 2019;19(1):184.

    PubMed  PubMed Central  Google Scholar 

  10. Barbui T, Vannucchi AM, Carobbio A, Thiele J, Rumi E, Gisslinger H, et al. Patterns of presentation and thrombosis outcome in patients with polycythemia vera strictly defined by WHO-criteria and stratified by calendar period of diagnosis. Am J Hematol. 2015;90(5):434–7.

    PubMed  Google Scholar 

  11. Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32.

    PubMed  Google Scholar 

  12. Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):22–33.

    CAS  PubMed  Google Scholar 

  13. Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood. 2011;117(22):5857–9.

    CAS  PubMed  Google Scholar 

  14. Palandri F, Catani L, Testoni N, Ottaviani E, Polverelli N, Fiacchini M, et al. Long-term follow-up of 386 consecutive patients with essential thrombocythemia: safety of cytoreductive therapy. Am J Hematol. 2008;84(4):215–20.

    Google Scholar 

  15. Landolfi R, Roberto M, Jack K, Heinz G, Gianni T, Carlo P, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350:114–24.

    CAS  PubMed  Google Scholar 

  16. Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018;8(1):2.

    PubMed  PubMed Central  Google Scholar 

  17. De Stefano V, Finazzi G, Barbui T. Antithrombotic therapy for venous thromboembolism in myeloproliferative neoplasms. Blood Cancer J. 2018;8(7):65.

    PubMed  PubMed Central  Google Scholar 

  18. Borowczyk M, Wojtaszewska M, Lewandowski K, Gil L, Lewandowska M, Lehmann-Kopydłowska A, et al. The JAK2 V617F mutational status and allele burden may be related with the risk of venous thromboembolic events in patients with Philadelphia-negative myeloproliferative neoplasms. Thromb Res. 2015;135(2):272–80.

    CAS  PubMed  Google Scholar 

  19. Vannucchi AM, Guglielmelli P, Longo G, Pancrazzi A, Ponziani V, Bogani C, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia. 2007;21(9):1952–9.

    CAS  PubMed  Google Scholar 

  20. Silver RT, Vandris K, Wang YL, Adriano F, Jones AV, Christos PJ, et al. JAK2V617F allele burden in polycythemia vera correlates with grade of myelofibrosis, but is not substantially affected by therapy. Leuk Res. 2011;35(2):177–82.

    CAS  PubMed  Google Scholar 

  21. Campbell PJ, MacLean C, Beer PA, Buck G, Wheatley K, Kiladjian J-J, et al. Correlation of blood counts with vascular complications in essential thrombocythemia: analysis of the prospective PT1 cohort. Blood. 2012;120(7):1409–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, Guerini V, et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol. 2007;35(5):702–11.

    CAS  PubMed  Google Scholar 

  23. Pareti FI, Gugliotta L, Mannucci L, Guarini A, Mannucci PM. Biochemical and metabolic aspects of platelet dysfunction in chronic myeloproliferative disorders. Thromb Haemost. 1982;47(2):84–9.

    CAS  PubMed  Google Scholar 

  24. Landolfi R, Rocca B, Patrono C. Bleeding and thrombosis in myeloproliferative disorders: mechanisms and treatment. Crit Rev Oncol Hematol. 1995;20(3):203–22.

    CAS  PubMed  Google Scholar 

  25. Schafer AI. Bleeding and thrombosis in the myeloproliferative disorders. Blood. 1984;64(1):1–12.

    CAS  PubMed  Google Scholar 

  26. Moore SF, Hunter RW, Harper MT, Savage JS, Siddiq S, Westbury SK, et al. Dysfunction of the PI3 kinase/Rap1/integrin ␣IIb3 pathway underlies ex vivo platelet hypoactivity in essential thrombocythemia. Blood. 2013;121(7):11.

    Google Scholar 

  27. Jensen MK, Brown PDN, Lund BV, Nielsen OJ, Hasselbalch HC. Increased platelet activation and abnormal membrane glycoprotein content and redistribution in myeloproliferative disorders. Br J Haematol. 2000;110(1):116–24.

    CAS  PubMed  Google Scholar 

  28. Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol. 2005;33(5):523–30.

    CAS  PubMed  Google Scholar 

  29. Arellano-Rodrigo E, Alvarez-Larrán A, Reverter JC, Villamor N, Colomer D, Cervantes F. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica. 2006;91:169–75.

    CAS  PubMed  Google Scholar 

  30. Arellano-Rodrigo E, Alvarez-Larrán A, Reverter J-C, Colomer D, Villamor N, Bellosillo B, et al. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia: relationship with thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol. 2008;84(2):102–8.

    Google Scholar 

  31. Panova-Noeva M, Marchetti M, Buoro S, Russo L, Leuzzi A, Finazzi G, et al. JAK2V617F mutation and hydroxyurea treatment as determinants of immature platelet parameters in essential thrombocythemia and polycythemia vera patients. Blood. 2011;118(9):2599–601.

    CAS  PubMed  Google Scholar 

  32. Randi ML, Brunati AM, Scapin M, Frasson M, Deana R, Magrin E, et al. Src tyrosine kinase preactivation is associated with platelet hypersensitivity in essential thrombocythemia and polycythemia vera. Blood. 2010;115(3):667–76.

    CAS  PubMed  Google Scholar 

  33. Landolfi R, Ciabattoni G, Patrignani P, Bizzi B, Patrono C. Increased thromboxane biosynthesis in patients with polycythemia vera: evidence for aspirin-suppressible platelet activation in vivo. Blood. 1992;8:1965–71.

    Google Scholar 

  34. Panova-Noeva M, Marchetti M, Spronk HM, Russo L, Diani E, Finazzi G, et al. Platelet-induced thrombin generation by the calibrated automated thrombogram assay is increased in patients with essential thrombocythemia and polycythemia vera. Am J Hematol. 2011;86(4):337–42.

    PubMed  Google Scholar 

  35. Lamrani L, Lacout C, Ollivier V, Denis CV, Gardiner E, Ho Tin Noe B, et al. Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood. 2014;124(7):1136–45.

    PubMed  PubMed Central  Google Scholar 

  36. Etheridge SL, Roh ME, Cosgrove ME, Sangkhae V, Fox NE, Chen J, et al. JAK2V617F-positive endothelial cells contribute to clotting abnormalities in myeloproliferative neoplasms. Proc Natl Acad Sci. 2014;111(6):2295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Strassel C, Kubovcakova L, Mangin PH, Ravanat C, Freund M, Skoda RC, et al. Haemorrhagic and thrombotic diatheses in mouse models with thrombocytosis. Thromb Haemost. 2015;113(02):414–25.

    PubMed  Google Scholar 

  38. Matsuura S, Thompson CR, Belghasem ME, Bekendam RH, Piasecki A, Leiva O, et al. Platelet dysfunction and thrombosis in JAK2V617F-mutated primary myelofibrotic mice. Arterioscler Thromb Vasc Biol. 2020;40:e262–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hobbs CM, Manning H, Bennett C, Vasquez L, Severin S, Brain L, et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood. 2013;122(23):3787–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24(9):1574–9.

    CAS  PubMed  Google Scholar 

  41. Carobbio A, Ferrari A, Masciulli A, Ghirardi A, Barosi G, Barbui T. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis. Blood Adv. 2019;3(11):1729–37.

    PubMed  PubMed Central  Google Scholar 

  42. Ronner L, Podoltsev N, Gotlib J, Heaney ML, Kuykendall AT, O’Connell C, et al. Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood. 2020;135:1696–703. https://doi.org/10.1182/blood.2019003347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alvarez-Larrán A, Arellano-Rodrigo E, Reverter JC, Domingo A, Villamor N, Colomer D, et al. Increased platelet, leukocyte, and coagulation activation in primary myelofibrosis. Ann Hematol. 2008;87(4):269–76.

    PubMed  Google Scholar 

  44. Wang W, Liu W, Fidler T, Wang Y, Tang Y, Woods B, et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 V617F mice. Circ Res. 2018;123:e35–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Falanga A, Marchetti M, Evangelista V, Vignoli A, Licini M, Balicco M, et al. Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood. 2000;96(13):7.

    Google Scholar 

  46. Marchetti M, Castoldi E, Spronk HMH, van Oerle R, Balducci D, Barbui T, et al. Thrombin generation and activated protein C resistance in patients with essential thrombocythemia and polycythemia vera. Blood. 2008;112(10):4061–8.

    CAS  PubMed  Google Scholar 

  47. Guy A, Favre S, Labrouche-Colomer S, Deloison L, Gourdou-Latyszenok V, Renault M-A, et al. High circulating levels of MPO-DNA are associated with thrombosis in patients with MPN. Leukemia. 2019;33(10):2544–8.

    PubMed  Google Scholar 

  48. Gupta N, Edelmann B, Schnoeder TM, Saalfeld FC, Wolleschak D, Kliche S, et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. Leukemia. 2017;31(5):1223–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Edelmann B, Gupta N, Schnöder TM, Oelschlegel AM, Shahzad K, Goldschmidt J, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128(10):4359–71.

    PubMed  PubMed Central  Google Scholar 

  50. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci. 2010;107(36):15880–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Massberg S, Grahl L, von Bruehl M-L, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96.

    CAS  PubMed  Google Scholar 

  52. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. von Brühl M-L, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.

    Google Scholar 

  54. Yang X, Li L, Liu J, Lv B, Chen F. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1. Thromb Res. 2016;137:211–8.

    CAS  PubMed  Google Scholar 

  55. Abrams ST, Su D, Sahraoui Y, Lin Z, Cheng Z, Nesbitt K, et al. Assembly of alternative prothrombinase by extracellular histones initiates and disseminates intravascular coagulation. Blood. 2020;137(1):103–14. https://doi.org/10.1182/blood.2019002973.

    Article  CAS  Google Scholar 

  56. Glaser CB, Morser J, Clarke JH, Blasko E, McLean K, Kuhn I, et al. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest. 1992;90(6):2565–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Oyarzún CP, Carestia A, Lev PR, Glembotsky AC, Castro Ríos MA, Moiraghi B, et al. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci Rep. 2016;13(6):38738.

    Google Scholar 

  58. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292.

    PubMed  PubMed Central  Google Scholar 

  59. Craver BM, Ramanathan G, Hoang S, Chang X, Mendez Luque LF, Brooks S, et al. N-acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm. Blood Adv. 2020;4(2):312–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. The Lancet. 1978;312(8102):1219–22.

    Google Scholar 

  61. Pearson T. Hemorheologic considerations in the pathogenesis of vascular occlusive events in polycythemia vera. Semin Thromb Hemost. 1997;23(05):433–9.

    CAS  PubMed  Google Scholar 

  62. Santisakultarm TP, Paduano CQ, Stokol T, Southard TL, Nishimura N, Skoda RC, et al. Stalled cerebral capillary blood flow in mouse models of essential thrombocythemia and polycythemia vera revealed by in vivo two-photon imaging. J Thromb Haemost. 2014;12(12):2120–30.

    CAS  PubMed  Google Scholar 

  63. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2017;128(1):125–40.

    PubMed  PubMed Central  Google Scholar 

  64. Wautier M-P, El Nemer W, Gane P, Rain J-D, Cartron J-P, Colin Y, et al. Increased adhesion to endothelial cells of erythrocytes from patients with polycythemia vera is mediated by laminin 5 chain and Lu/BCAM. Blood. 2007;110(3):894–901.

    CAS  PubMed  Google Scholar 

  65. De Grandis M, Cambot M, Wautier M-P, Cassinat B, Chomienne C, Colin Y, et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2013;121(4):658–65.

    PubMed  Google Scholar 

  66. Poisson J, Tanguy M, Davy H, Camara F, Mdawar M-BE, Kheloufi M, et al. Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest. 2020;130(5):2630–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cella G, Marchetti M, Vianello F, Panova-Noeva M, Vignoli A, Russo L, et al. Nitric oxide derivatives and soluble plasma selectins in patients with myeloproliferative neoplasms. Thromb Haemost. 2010;104(07):151–6.

    CAS  PubMed  Google Scholar 

  68. Neunteufl T, Heher S, Stefenelli T, Pabinger I, Gisslinger H. Endothelial dysfunction in patients with polycythaemia vera. Br J Haematol. 2001;115(2):354–9.

    CAS  PubMed  Google Scholar 

  69. Belotti A, Elli E, Speranza T, Lanzi E, Pioltelli P, Pogliani E. Circulating endothelial cells and endothelial activation in essential thrombocythemia: results from CD146+ immunomagnetic enrichment—flow cytometry and soluble E-selectin detection. Am J Hematol. 2011;87(3):319–20.

    PubMed  Google Scholar 

  70. Torres C, Fonseca AM, Leander M, Matos R, Morais S, Campos M, et al. Circulating endothelial cells in patients with venous thromboembolism and myeloproliferative neoplasms. Plos One. 2013;8(12):e81574.

    PubMed  PubMed Central  Google Scholar 

  71. Kogan I, Chap D, Hoffman R, Axelman E, Brenner B, Nadir Y. JAK-2 V617F mutation increases heparanase procoagulant activity. Thromb Haemost. 2016;115(01):73–80.

    PubMed  Google Scholar 

  72. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R. The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood. 2009;113(21):5246–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rosti V, Villani L, Riboni R, Poletto V, Bonetti E, Tozzi L, et al. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood. 2013;121(2):360–8.

    CAS  PubMed  Google Scholar 

  74. Guy A, Gourdou-Latyszenok V, Le-Lay N, Peghaire C, Kilani B, Dias JV, et al. Vascular endothelial cell expression of JAK2V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica. 2018;104(1):70–8.

    PubMed  Google Scholar 

  75. Guadall A, Lesteven E, Letort G, Awan Toor S, Delord M, Pognant D, et al. Endothelial cells harbouring the JAK2V617F mutation display pro-adherent and pro-thrombotic features. Thromb Haemost. 2018;118(09):1586–99.

    PubMed  Google Scholar 

  76. Castiglione M, Jiang Y-P, Mazzeo C, Lee S, Chen J-S, Kaushansky K, et al. Endothelial JAK2V617F mutation leads to thrombosis, vasculopathy, and cardiomyopathy in a murine model of myeloproliferative neoplasm. J Thromb Haemost. 2020;18(12):3359–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tong D, Yu M, Guo L, Li T, Li J, Novakovic VA, et al. Phosphatidylserine-exposing blood and endothelial cells contribute to the hypercoagulable state in essential thrombocythemia patients. Ann Hematol. 2018;97(4):605–16.

    CAS  PubMed  Google Scholar 

  78. Marchetti M, Tartari CJ, Russo L, Panova-Noeva M, Leuzzi A, Rambaldi A, et al. Phospholipid-dependent procoagulant activity is highly expressed by circulating microparticles in patients with essential thrombocythemia. Am J Hematol. 2014;89(1):68–73.

    CAS  PubMed  Google Scholar 

  79. Trappenburg MC, van Schilfgaarde M, Marchetti M, Spronk HM, Cate HT, Leyte A, et al. Elevated procoagulant microparticles expressing endothelial and platelet markers in essential thrombocythemia. Haematologica. 2009;94(7):911–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Duchemin J, Ugo V, Ianotto J-C, Lecucq L, Mercier B, Abgrall J-F. Increased circulating procoagulant activity and thrombin generation in patients with myeloproliferative neoplasms. Thromb Res. 2010;126(3):238–42.

    CAS  PubMed  Google Scholar 

  81. Wieczorek I, MacGregor IR, Prescott RJ, Ludlam CA. The fibrinolytic system and proteins C and S in treated polycythaemia rubra vera. Blood Coagul Fibrinolysis. 1992;3(6):823–6.

    CAS  PubMed  Google Scholar 

  82. Bucalossi A, Marotta G, Bigazzi C, Galieni P, Dispensa E. Reduction of antithrombin III, protein C, and protein S levels and activated protein C resistance in polycythemia vera and essential thrombocythemia patients with thrombosis. Am J Hematol. 1996;52(1):14–20.

    CAS  PubMed  Google Scholar 

  83. Charpentier A, Lebreton A, Rauch A, Bauters A, Trillot N, Nibourel O, et al. Microparticle phenotypes are associated with driver mutations and distinct thrombotic risks in essential thrombocythemia. Haematologica. 2016;101(9):e365–8.

    PubMed  PubMed Central  Google Scholar 

  84. Moles-Moreau M-P, Ternisien C, Tanguy-Schmidt A, Boyer F, Gardembas M, Dib M, et al. Flow cytometry-evaluated platelet CD36 expression, reticulated platelets and platelet microparticles in essential thrombocythaemia and secondary thrombocytosis. Thromb Res. 2010;126(5):e394–6.

    CAS  PubMed  Google Scholar 

  85. Kissova J, Ovesna P, Bulikova A, Zavřelova J, Penka M. Increasing procoagulant activity of circulating microparticles in patients with Philadelphia-negative myeloproliferative neoplasms: a single-centre experience. Blood Coagul Fibrinolysis. 2015;26(4):448–53.

    CAS  PubMed  Google Scholar 

  86. Zhang W, Qi J, Zhao S, Shen W, Dai L, Han W, et al. Clinical significance of circulating microparticles in Ph- myeloproliferative neoplasms. Oncol Lett. 2017;14(2):2531–6.

    PubMed  PubMed Central  Google Scholar 

  87. Baccouche H, Jemaa MB, Chakroun A, Chadi S, Mahjoub S, Sfar I, et al. The evaluation of the relevance of thrombin generation and procoagulant activity in thrombotic risk assessment in BCR-ABL-negative myeloproliferative neoplasm patients. Int J Lab Hematol. 2017;39(5):502–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloé James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guy, A., James, C. (2023). Thrombosis and Myeloproliferative Neoplasms. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics