Skip to main content

Interferons in Myeloproliferative Neoplasms

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia

Abstract

It took more than 30 years of clinical use of interferon (INF) in patients with myeloproliferative neoplasms (MPNs) for the official approval of the first ever interferon (ropeginterferon alpha-2b) for patients with polycythemia vera (PV), one of the classical MPNs. INF possesses broad range of biological properties, including enhancement of immune response and direct effects on malignant cells with a potential of their ultimate elimination. Despite its long-known antiproliferative, anti-inflammatory, and auspicious disease-modifying effects, side effects hampered widespread INF use and complicated its approval path for MPN patients. Notwithstanding, INF has been so far used in numerous, smaller, earlier phase studies encompassing almost 1000 patients with MPN where it constantly showed high rates of hematological, and less commonly molecular and histopathological remissions. The later responses, which in some patients persisted even after therapy discontinuation, highlighted the agent’s potential to alter the disease course. Approval of ropeginterferon for PV and ongoing use of other INF forms in an off-label setting for MPN patients, will continue to further define the true role of INF within MPN treatment armamentarium. In this chapter, we provide overview of INF mechanisms and summary of clinical data of INF in patients with classical MPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–86.

    CAS  PubMed  Google Scholar 

  2. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8.

    CAS  PubMed  Google Scholar 

  3. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med. 2014;211(2):245–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mullally A, Bruedigam C, Poveromo L, Heidel FH, Purdon A, Vu T, et al. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood. 2013;121(18):3692–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Massaro P, Foa P, Pomati M, LaTargia ML, Iurlo A, Clerici C, et al. Polycythemia vera treated with recombinant interferon-alpha 2a: evidence of a selective effect on the malignant clone. Am J Hematol. 1997;56(2):126–8.

    CAS  PubMed  Google Scholar 

  6. Lu M, Zhang W, Li Y, Berenzon D, Wang X, Wang J, et al. Interferon-alpha targets JAK2V617F-positive hematopoietic progenitor cells and acts through the p38 MAPK pathway. Exp Hematol. 2010;38(6):472–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kiladjian JJ, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016;30(4):776–81.

    CAS  PubMed  Google Scholar 

  8. Riley CH, Brimnes MK, Hansen M, Jensen MK, Hasselbalch HC, Kjaer L, et al. Interferon-α induces marked alterations in circulating regulatory T cells, NK cell subsets, and dendritic cells in patients with JAK2V617F-positive essential thrombocythemia and polycythemia vera. Eur J Haematol. 2016;97(1):83–92.

    CAS  PubMed  Google Scholar 

  9. Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-alpha. Eur J Haematol. 2015;94(3):227–34.

    CAS  PubMed  Google Scholar 

  10. Paquette RL, Hsu N, Said J, Mohammed M, Rao NP, Shih G, et al. Interferon-alpha induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo. Leukemia. 2002;16(8):1484–9.

    CAS  PubMed  Google Scholar 

  11. Skov V, Riley CH, Thomassen M, Kjaer L, Stauffer Larsen T, Bjerrum OW, et al. The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms. Leuk Lymphoma. 2017;58(8):1914–21.

    CAS  PubMed  Google Scholar 

  12. Jäger R, Gisslinger H, Fuchs E, Bogner E, Milosevic Feenstra JD, Weinzierl J, et al. Germline genetic factors influence the outcome of interferon-α therapy in polycythemia vera. Blood. 2021;137(3):387–91.

    PubMed  PubMed Central  Google Scholar 

  13. Czech J, Cordua S, Weinbergerova B, Baumeister J, Crepcia A, Han L, et al. JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation. Leukemia. 2019;33(4):995–1010.

    CAS  PubMed  Google Scholar 

  14. Verger E, Cassinat B, Chauveau A, Dosquet C, Giraudier S, Schlageter MH, et al. Clinical and molecular response to interferon-α therapy in essential thrombocythemia patients with CALR mutations. Blood. 2015;126(24):2585–91.

    CAS  PubMed  Google Scholar 

  15. Kjær L, Cordua S, Holmström MO, Thomassen M, Kruse TA, Pallisgaard N, et al. Differential dynamics of CALR mutant allele burden in myeloproliferative neoplasms during interferon alfa treatment. PLoS One. 2016;11(10):e0165336.

    PubMed  PubMed Central  Google Scholar 

  16. Kiladjian JJ, Masse A, Cassinat B, Mokrani H, Teyssandier I, le Couedic JP, et al. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia. 2010;24(8):1519–23.

    CAS  PubMed  Google Scholar 

  17. Knudsen TA, Skov V, Stevenson K, Werner L, Duke W, Laurore C, et al. Genomic profiling of a randomized trial of interferon-α vs hydroxyurea in MPN reveals mutation-specific responses. Blood Adv. 2022;6(7):2107–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Koschmieder S, Chatain N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev. 2020;42:100711.

    CAS  PubMed  Google Scholar 

  19. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacquelin S, Straube J, Cooper L, Vu T, Song A, Bywater M, et al. Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation. Blood. 2018;132(26):2707–21.

    CAS  PubMed  Google Scholar 

  21. Mosca M, Hermange G, Tisserand A, Noble R, Marzac C, Marty C, et al. Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood. 2021;138(22):2231–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodriguez-Meira A, Norfo R, Wen WX, Chédeville AL, Rahman H, O’Sullivan J, et al. Deciphering TP53 mutant cancer evolution with single-cell multi-omics. bioRxiv. 2022:485984.

    Google Scholar 

  23. Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res. 2013;37(2):214–20.

    CAS  PubMed  Google Scholar 

  24. Hasselbalch HC, Holmström MO. Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure? Semin Immunopathol. 2019;41(1):5–19.

    CAS  PubMed  Google Scholar 

  25. Linkesch W, Gisslinger H, Ludwig H, Flener R, Sinzinger H. Therapy with interferon (recombinant IFN-alpha-2C) in myeloproliferative diseases with severe thrombocytoses. Acta Med Austriaca. 1985;12(5):123–7.

    CAS  PubMed  Google Scholar 

  26. Silver RT. Recombinant interferon-alpha for treatment of polycythaemia vera. Lancet (London, England). 1988;2(8607):403.

    CAS  PubMed  Google Scholar 

  27. Silver RT, Vandris K. Recombinant interferon alpha (rIFN alpha-2b) may retard progression of early primary myelofibrosis. Leukemia. 2009;23(7):1366–9.

    CAS  PubMed  Google Scholar 

  28. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065–72.

    CAS  PubMed  Google Scholar 

  29. Ianotto JC, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, Demory JL, et al. Efficacy and safety of pegylated-interferon alpha-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol. 2013;162(6):783–91.

    CAS  PubMed  Google Scholar 

  30. Masarova L, Patel KP, Newberry KJ, Cortes J, Borthakur G, Konopleva M, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4(4):e165–75.

    PubMed  PubMed Central  Google Scholar 

  31. Bewersdorf JP, Giri S, Wang R, Podoltsev N, Williams RT, Tallman MS, et al. Interferon alpha therapy in essential thrombocythemia and polycythemia vera-a systematic review and meta-analysis. Leukemia. 2021;35(6):1643–60.

    CAS  PubMed  Google Scholar 

  32. Jabbour E, Kantarjian H, Cortes J, Thomas D, Garcia-Manero G, Ferrajoli A, et al. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer. 2007;110(9):2012–8.

    CAS  PubMed  Google Scholar 

  33. Utke Rank C, Weis Bjerrum O, Larsen TS, Kjaer L, de Stricker K, Riley CH, et al. Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma. 2015;57(2):1–7.

    Google Scholar 

  34. Masarova L, Yin CC, Cortes JE, Konopleva M, Borthakur G, Newberry KJ, et al. Histomorphological responses after therapy with pegylated interferon alpha-2a in patients with essential thrombocythemia (ET) and polycythemia vera (PV). Exp Hematol Oncol. 2017;6:30.

    PubMed  PubMed Central  Google Scholar 

  35. Pizzi M, Silver RT, Barel A, Orazi A. Recombinant interferon-alpha in myelofibrosis reduces bone marrow fibrosis, improves its morphology and is associated with clinical response. Mod Pathol. 2015;28(10):1315–23.

    CAS  PubMed  Google Scholar 

  36. De Oliveira RD, S-D J, Zhao LP, et al. Interferon-alpha (IFN) therapy discontinuation is feasible in myeloproliferative neoplasm (MPN) patients with complete hematological remission. Blood. 2020;136:35–6.

    Google Scholar 

  37. Abu-Zeinah GKS, Cruz T, et al. Interferon in polycythemia vera (PV) yields improved myelofibrosis-free and overall survival. Blood. 2020;136:31–2.

    Google Scholar 

  38. Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A, et al. A randomized, phase 3, trial of interferon-α versus hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022;139(19):2931–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yacoub A, Mascarenhas J, Kosiorek H, Prchal JT, Berenzon D, Baer MR, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019;134(18):1498–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Emanuel RM, Dueck AC, Geyer HL, Kiladjian JJ, Slot S, Zweegman S, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(33):4098–103.

    Google Scholar 

  41. Mazza GL, Mead-Harvey C, Mascarenhas J, Yacoub A, Kosiorek HE, Hoffman R, et al. Symptom burden and quality of life in patients with high-risk essential thrombocythaemia and polycythaemia vera receiving hydroxyurea or pegylated interferon alfa-2a: a post-hoc analysis of the MPN-RC 111 and 112 trials. Lancet Haematol. 2022;9(1):e38–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. European Medicines Agency. Besremi assessment report. https://www.ema.europa.eu/en/medicines/human/EPAR/besremi. Access 20 Apr 2022.

  43. Food and Drug Administration. Besremi approval. https://www.drugs.com/newdrugs/fda-approves-besremi-ropeginterferon-alfa-2b-njft-adults-polycythemia-vera-5712.html. Access 22 Apr 2022.

  44. Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126(15):1762–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner SM, Melchardt T, Greil R. Ropeginterferon alfa-2b for the treatment of patients with polycythemia vera. Drugs Today (Barc). 2020;56(3):195–202.

    CAS  PubMed  Google Scholar 

  46. Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–208.

    PubMed  Google Scholar 

  47. Gisslinger HKC, Georgiev P, et al. Long-term use of ropeginterferon alpha-2b in polycythemia vera: 5-year results from a randomized controlled study and its extension. Blood. 2020;136:33.

    Google Scholar 

  48. Kiladjian JJKC, Georgiev P, et al. Towards a potential operational cure in patients with polycythaemia vera? results from five years’ ropeginterferon alpha-2b therapy in a randomized setting. HemaSphere. 2021;5(Abstract EP 1076):324799.

    Google Scholar 

  49. Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ferrari A, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021;8(3):e175–e84.

    CAS  PubMed  Google Scholar 

  50. Silver RT, Barel AC, Lascu E, Ritchie EK, Roboz GJ, Christos PJ, et al. The effect of initial molecular profile on response to recombinant interferon-alpha (rIFNalpha) treatment in early myelofibrosis. Cancer. 2017;123(14):2680–7.

    CAS  PubMed  Google Scholar 

  51. Bewersdorf JP, Giri S, Wang R, Podoltsev N, Williams RT, Rampal RK, et al. Interferon therapy in myelofibrosis: systematic review and meta-analysis. Clin Lymphoma Myeloma Leuk. 2020;20(10):e712–e23.

    PubMed  PubMed Central  Google Scholar 

  52. Lu M, Wang X, Li Y, Tripodi J, Mosoyan G, Mascarenhas J, et al. Combination treatment in vitro with nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood. 2012;120(15):3098–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sørensen AL, Mikkelsen SU, Knudsen TA, Bjørn ME, Andersen CL, Bjerrum OW, et al. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica. 2020;105(9):2262–72.

    PubMed  PubMed Central  Google Scholar 

  54. Kiladjian JJ, Soret-Dulphy J, Resche-Rigon M, et al. Ruxopeg, a multi-center bayesian phase 1/2 adaptive randomized trial of the combination of ruxolitinib and pegylated interferon alpha 2a in patients with myeloproliferative neoplasm (MPN)-associated myelofibrosis. Blood. 2018;132:581.

    Google Scholar 

  55. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32(5):1057–69.

    PubMed  PubMed Central  Google Scholar 

  56. Network NCC. Myeloproliferative neoplasms (Version 3.2022) https://www.nccn.org/professionals/physician_gls/pdf/mpn_blocks.pdf.

  57. Knudsen T A, H DL, Ocias L F, Bjerrum O W, Brabrand M, et al. Three-year analysis of the Daliah trial - a randomized controlled phase III clinical trial comparing recombinant interferon alpha 2 vs hydroxyurea in patients with myeloproliferative neoplasms EHA Jun 15, 2019.; 267363, Oral Presentation S1609.

    Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Masarova .

Editor information

Editors and Affiliations

Ethics declarations

No relevant COI to disclose.

Funding Source

This review was supported in part by the MD Anderson Cancer Centre Support Grant (CCSG) CA016672.

Author Contributions

Both authors participated in writing the paper, have reviewed and approved the current version of the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masarova, L., Verstovsek, S. (2023). Interferons in Myeloproliferative Neoplasms. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics