Skip to main content

In the Pipeline: Emerging Therapy for MDS and MDS/MPN

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia
  • 449 Accesses

Abstract

Novel agents in combination with hypomethylating agents are an emerging strategy for clinical trials in involving higher-risk MDS or MDS/MPN and in patients harbouring high-risk mutations such as those involving TP53. In this chapter, we highlight the important pathogenetic pathways in MDS and MDS/MPN and their targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dotson JL, Lebowicz Y. Myelodysplastic syndrome. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC; 2020.

    Google Scholar 

  2. Hamblin T. Clinical features of MDS. Leuk Res. 1992;16(1):89–93.

    PubMed  Google Scholar 

  3. Ma X. Epidemiology of myelodysplastic syndromes. Am J Med. 2012;125(7 Suppl):S2–5.

    PubMed  PubMed Central  Google Scholar 

  4. Montalban-Bravo G, Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(1):129–47.

    PubMed  Google Scholar 

  5. Foran JM, Shammo JM. Clinical presentation, diagnosis, and prognosis of myelodysplastic syndromes. Am J Med. 2012;125(7 Suppl):S6–13.

    PubMed  Google Scholar 

  6. Mailankody S, Pfeiffer RM, Kristinsson SY, Korde N, Bjorkholm M, Goldin LR, et al. Risk of acute myeloid leukemia and myelodysplastic syndromes after multiple myeloma and its precursor disease (MGUS). Blood. 2011;118(15):4086–92.

    PubMed  PubMed Central  Google Scholar 

  7. Santini V. Treatment of low-risk myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program. 2016;2016(1):462–9.

    PubMed  PubMed Central  Google Scholar 

  8. Steensma DP. Myelodysplastic syndromes current treatment algorithm 2018. Blood Cancer J. 2018;8(5):47.

    PubMed  PubMed Central  Google Scholar 

  9. Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, et al. Clinical application and proposal for modification of the international working group (IWG) response criteria in myelodysplasia. Blood. 2006;108(2):419–25.

    PubMed  Google Scholar 

  10. Cheson BD, Bennett JM, Kantarjian H, Pinto A, Schiffer CA, Nimer SD, et al. Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood. 2000;96(12):3671–4.

    PubMed  Google Scholar 

  11. Platzbecker U, Fenaux P, Adès L, Giagounidis A, Santini V, van de Loosdrecht AA, et al. Proposals for revised IWG 2018 hematological response criteria in patients with MDS included in clinical trials. Blood. 2019;133(10):1020–30.

    PubMed  PubMed Central  Google Scholar 

  12. de Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753–62.

    PubMed  PubMed Central  Google Scholar 

  13. Scheid C, de Wreede L, van Biezen A, Koenecke C, Göhring G, Volin L, et al. Validation of the revised IPSS at transplant in patients with myelodysplastic syndrome/transformed acute myelogenous leukemia receiving allogeneic stem cell transplantation: a retrospective analysis of the EBMT chronic malignancies working party. Bone Marrow Transplant. 2017;52(11):1519–25.

    PubMed  PubMed Central  Google Scholar 

  14. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    PubMed  Google Scholar 

  15. Pati H, Kundil VK. Myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes: molecular pathogenetic mechanisms and their implications. Indian J Hematol Blood Transfus. 2019;35(1):3–11.

    PubMed  PubMed Central  Google Scholar 

  16. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95(1):97–115.

    PubMed  Google Scholar 

  17. Roman E, Smith A, Appleton S, Crouch S, Kelly R, Kinsey S, et al. Myeloid malignancies in the real-world: occurrence, progression and survival in the UK’s population-based haematological malignancy research network 2004-15. Cancer Epidemiol. 2016;42:186–98.

    PubMed  PubMed Central  Google Scholar 

  18. Solary E. Chronic myelomonocytic leukemia (CMML). Atlas Genet Cytogenet Oncol Haematol. 2014;18(1):50–2.

    Google Scholar 

  19. Rollison DE, Howlader N, Smith MT, Strom SS, Merritt WD, Ries LA, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112(1):45–52.

    PubMed  Google Scholar 

  20. Chang TY, Dvorak CC, Loh ML. Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Blood. 2014;124(16):2487–97.

    PubMed  Google Scholar 

  21. Passmore SJ, Chessells JM, Kempski H, Hann IM, Brownbill PA, Stiller CA. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol. 2003;121(5):758–67.

    PubMed  Google Scholar 

  22. Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123(24):3714–9.

    PubMed  Google Scholar 

  23. Cannella L, Breccia M, Latagliata R, Frustaci A, Alimena G. Clinical and prognostic features of patients with myelodysplastic/myeloproliferative syndrome categorized as unclassified (MDS/MPD-U) by WHO classification. Leuk Res. 2008;32(3):514–6.

    PubMed  Google Scholar 

  24. Orazi A, Germing U. The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia. 2008;22(7):1308–19.

    PubMed  Google Scholar 

  25. Cazzola M, Malcovati L, Invernizzi R. Myelodysplastic/myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2011;2011:264–72.

    PubMed  Google Scholar 

  26. Brecqueville M, Rey J, Bertucci F, Coppin E, Finetti P, Carbuccia N, et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer. 2012;51(8):743–55.

    PubMed  Google Scholar 

  27. Kuo MC, Liang DC, Huang CF, Shih YS, Wu JH, Lin TL, et al. RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Leukemia. 2009;23(8):1426–31.

    PubMed  Google Scholar 

  28. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7.

    PubMed  Google Scholar 

  29. Tefferi A, Pardanani A, Gangat N, Begna KH, Hanson CA, Van Dyke DL, et al. Leukemia risk models in primary myelofibrosis: an international working group study. Leukemia. 2012;26(6):1439–41.

    PubMed  Google Scholar 

  30. Breccia M, Biondo F, Latagliata R, Carmosino I, Mandelli F, Alimena G. Identification of risk factors in atypical chronic myeloid leukemia. Haematologica. 2006;91(11):1566–8.

    PubMed  Google Scholar 

  31. Oscier D. Atypical chronic myeloid leukemias. Pathol Biol (Paris). 1997;45(7):587–93.

    PubMed  Google Scholar 

  32. Wang SA, Hasserjian RP, Fox PS, Rogers HJ, Geyer JT, Chabot-Richards D, et al. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood. 2014;123(17):2645–51.

    PubMed  PubMed Central  Google Scholar 

  33. Khan H, Vale C, Bhagat T, Verma A. Role of DNA methylation in the pathogenesis and treatment of myelodysplastic syndromes. Semin Hematol. 2013;50(1):16–37.

    PubMed  Google Scholar 

  34. Reilly B, Tanaka TN, Diep D, Yeerna H, Tamayo P, Zhang K, et al. DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv. 2019;3(19):2845–58.

    PubMed  PubMed Central  Google Scholar 

  35. Ogawa S. Genetics of MDS. Blood. 2019;133(10):1049–59.

    PubMed  PubMed Central  Google Scholar 

  36. Ganguly BB, Kadam NN. Mutations of myelodysplastic syndromes (MDS): an update. Mutat Res Rev Mutat Res. 2016;769:47–62.

    PubMed  Google Scholar 

  37. Leone G, Teofili L, Voso MT, Lübbert M. DNA methylation and demethylating drugs in myelodysplastic syndromes and secondary leukemias. Haematologica. 2002;87(12):1324–41.

    PubMed  Google Scholar 

  38. Itzykson R, Fenaux P. Epigenetics of myelodysplastic syndromes. Leukemia. 2014;28(3):497–506.

    PubMed  Google Scholar 

  39. Hopfer O, Komor M, Koehler IS, Freitag C, Schulze M, Hoelzer D, et al. Aberrant promotor methylation in MDS hematopoietic cells during in vitro lineage specific differentiation is differently associated with DNMT isoforms. Leuk Res. 2009;33(3):434–42.

    PubMed  Google Scholar 

  40. Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol. 2008;140(6):610–24.

    PubMed  Google Scholar 

  41. Loh ML. Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol. 2011;152(6):677–87.

    PubMed  Google Scholar 

  42. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    PubMed  PubMed Central  Google Scholar 

  43. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013;45(10):1232–7.

    PubMed  Google Scholar 

  44. Ernst T, Chase A, Zoi K, Waghorn K, Hidalgo-Curtis C, Score J, et al. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica. 2010;95(9):1473–80.

    PubMed  PubMed Central  Google Scholar 

  45. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36.

    PubMed  Google Scholar 

  46. Visconte V, Avishai N, Mahfouz R, Tabarroki A, Cowen J, Sharghi-Moshtaghin R, et al. Distinct iron architecture in SF3B1-mutant myelodysplastic syndrome patients is linked to an SLC25A37 splice variant with a retained intron. Leukemia. 2015;29(1):188–95.

    PubMed  Google Scholar 

  47. Grand FH, Iqbal S, Zhang L, Russell NH, Chase A, Cross NC. A constitutively active SPTBN1-FLT3 fusion in atypical chronic myeloid leukemia is sensitive to tyrosine kinase inhibitors and immunotherapy. Exp Hematol. 2007;35(11):1723–7.

    PubMed  Google Scholar 

  48. Walz C, Erben P, Ritter M, Bloor A, Metzgeroth G, Telford N, et al. Response of ETV6-FLT3-positive myeloid/lymphoid neoplasm with eosinophilia to inhibitors of FMS-like tyrosine kinase 3. Blood. 2011;118(8):2239–42.

    PubMed  Google Scholar 

  49. Sotlar K, Marafioti T, Griesser H, Theil J, Aepinus C, Jaussi R, et al. Detection of c-kit mutation asp 816 to Val in microdissected bone marrow infiltrates in a case of systemic mastocytosis associated with chronic myelomonocytic leukaemia. Mol Pathol. 2000;53(4):188–93.

    PubMed  PubMed Central  Google Scholar 

  50. Machherndl-Spandl S, Sega W, Bösmüller H, Germing U, Gruber C, Nachtkamp K, et al. Prognostic impact of blast cell counts in dysplastic bone marrow disorders (MDS and CMML I) with concomitant fibrosis. Ann Hematol. 2014;93(1):57–64.

    PubMed  Google Scholar 

  51. Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J, et al. Somatic activation of oncogenic KRAS in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci U S A. 2004;101(2):597–602.

    PubMed  Google Scholar 

  52. Van Meter ME, Díaz-Flores E, Archard JA, Passegué E, Irish JM, Kotecha N, et al. K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood. 2007;109(9):3945–52.

    PubMed  PubMed Central  Google Scholar 

  53. Oh ST, Gotlib J. JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol. 2010;3(3):323–37.

    PubMed  Google Scholar 

  54. Tiu RV, Gondek LP, O’Keefe CL, Elson P, Huh J, Mohamedali A, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 2011;117(17):4552–60.

    PubMed  PubMed Central  Google Scholar 

  55. Oran B, Popat U, Andersson B, Champlin R. Allogeneic hematopoietic stem cell transplantation for myelodysplastic syndromes. Clin Lymphoma Myeloma Leuk. 2013;13(Suppl 2):S282–8.

    PubMed  Google Scholar 

  56. de Witte T, Hagemeijer A, Suciu S, Belhabri A, Delforge M, Kobbe G, et al. Value of allogeneic versus autologous stem cell transplantation and chemotherapy in patients with myelodysplastic syndromes and secondary acute myeloid leukemia. Final results of a prospective randomized European intergroup trial. Haematologica. 2010;95(10):1754–61.

    PubMed  PubMed Central  Google Scholar 

  57. Barba P, Ratan R, Cho C, Ceberio I, Hilden P, Devlin SM, et al. Hematopoietic cell transplantation comorbidity index predicts outcomes in patients with acute myeloid leukemia and myelodysplastic syndromes receiving CD34(+) selected grafts for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2017;23(1):67–74.

    PubMed  Google Scholar 

  58. Galgano L, Hutt D. HSCT: how does it work? Cham: Springer; 2018.

    Google Scholar 

  59. Onida F, Chalandon Y. Myelodysplastic/myeloproliferative neoplasms. In: Carreras E, Dufour C, Mohty M, Kröger N, editors. The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies. Cham: Springer International Publishing; 2019. p. 561–8.

    Google Scholar 

  60. Liu HD, Ahn KW, Hu ZH, Hamadani M, Nishihori T, Wirk B, et al. Allogeneic hematopoietic cell transplantation for adult chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2017;23(5):767–75.

    PubMed  PubMed Central  Google Scholar 

  61. Patnaik MM, Wassie EA, Padron E, Onida F, Itzykson R, Lasho TL, et al. Chronic myelomonocytic leukemia in younger patients: molecular and cytogenetic predictors of survival and treatment outcome. Blood Cancer J. 2015;5(1):e270.

    PubMed  PubMed Central  Google Scholar 

  62. Bartenstein M, Deeg HJ. Hematopoietic stem cell transplantation for MDS. Hematol Oncol Clin North Am. 2010;24(2):407–22.

    PubMed  PubMed Central  Google Scholar 

  63. Lim ZY, Ho AY, Ingram W, Kenyon M, Pearce L, Czepulkowski B, et al. Outcomes of alemtuzumab-based reduced intensity conditioning stem cell transplantation using unrelated donors for myelodysplastic syndromes. Br J Haematol. 2006;135(2):201–9.

    PubMed  Google Scholar 

  64. Martino R, Iacobelli S, Brand R, Jansen T, van Biezen A, Finke J, et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood. 2006;108(3):836–46.

    PubMed  Google Scholar 

  65. Styczyński J, Tridello G, Koster L, Iacobelli S, van Biezen A, van der Werf S, et al. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020;55(1):126–36.

    PubMed  Google Scholar 

  66. Onida F, de Wreede LC, van Biezen A, Eikema DJ, Byrne JL, Iori AP, et al. Allogeneic stem cell transplantation in patients with atypical chronic myeloid leukaemia: a retrospective study from the chronic malignancies working party of the European society for blood and marrow transplantation. Br J Haematol. 2017;177(5):759–65.

    PubMed  Google Scholar 

  67. Sharma P, Shinde SS, Damlaj M, Hefazi Rorghabeh M, Hashmi SK, Litzow MR, et al. Allogeneic hematopoietic stem cell transplant in adult patients with myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes. Leuk Lymphoma. 2017;58(4):872–81.

    PubMed  Google Scholar 

  68. Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125(7):1083–90.

    PubMed  Google Scholar 

  69. Merkel DG, Nagler A. The role of hypomethylating agents in myelodysplastic syndrome: changing the management paradigm. Expert Rev Hematol. 2013;6(6):665–76.

    PubMed  Google Scholar 

  70. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123(1):8–13.

    PubMed  Google Scholar 

  71. Li LH, Olin EJ, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970;30(11):2760–9.

    PubMed  Google Scholar 

  72. Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 2005;10(3):176–82.

    PubMed  Google Scholar 

  73. Momparler RL. Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin Hematol. 2005;42(3 Suppl 2):S9–16.

    PubMed  Google Scholar 

  74. Kuo HK, Griffith JD, Kreuzer KN. 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res. 2007;67(17):8248–54.

    PubMed  Google Scholar 

  75. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, et al. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005;25(11):4727–41.

    PubMed  PubMed Central  Google Scholar 

  76. Saba HI. Decitabine in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag. 2007;3(5):807–17.

    PubMed  PubMed Central  Google Scholar 

  77. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F, et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood. 1998;91(8):2985–90.

    PubMed  Google Scholar 

  78. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Köhler G, Wijermans P, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood. 2002;100(8):2957–64.

    PubMed  Google Scholar 

  79. Kornblith AB, Herndon JE 2nd, Silverman LR, Demakos EP, Odchimar-Reissig R, Holland JF, et al. Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a cancer and leukemia group B study. J Clin Oncol. 2002;20(10):2441–52.

    PubMed  Google Scholar 

  80. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40.

    PubMed  Google Scholar 

  81. Kantarjian H, O’Brien S, Cortes J, Giles F, Faderl S, Jabbour E, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006;106(5):1090–8.

    PubMed  Google Scholar 

  82. Lee B-H, Kang K-W, Jeon MJ, Yu ES, Kim DS, Choi H, et al. Comparison between 5-day decitabine and 7-day azacitidine for lower-risk myelodysplastic syndromes with poor prognostic features: a retrospective multicentre cohort study. Sci Rep. 2020;10(1):39.

    PubMed  PubMed Central  Google Scholar 

  83. Feng X, Chen X, Nie S, Chang Y, Meng F, Zhou J, et al. Decitabine: an effective and safe treatment for myelodysplastic syndrome and acute myeloid leukemia. J Cancer Res Ther. 2019;15(7):1471–6.

    PubMed  Google Scholar 

  84. He P-F, Zhou J-D, Yao D-M, Ma J-C, Wen X-M, Zhang Z-H, et al. Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: a systematic review and meta-analysis. Oncotarget. 2017;8(25):41498–507.

    PubMed  PubMed Central  Google Scholar 

  85. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    PubMed  PubMed Central  Google Scholar 

  86. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9.

    PubMed  PubMed Central  Google Scholar 

  87. Kubasch AS, Platzbecker U. The wolf of hypomethylating agent failure: what comes next? Haematologica. 2019;104(8):1505–8.

    PubMed  PubMed Central  Google Scholar 

  88. Komrokji RS. Treatment of higher-risk myelodysplastic syndromes after failure of hypomethylating agents. Clin Lymphoma Myeloma Leuk. 2015;15(Suppl):S56–9.

    PubMed  Google Scholar 

  89. Jabbour E, Garcia-Manero G, Batty N, Shan J, O’Brien S, Cortes J, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer. 2010;116(16):3830–4.

    PubMed  Google Scholar 

  90. Gil-Perez A, Montalban-Bravo G. Management of myelodysplastic syndromes after failure of response to hypomethylating agents. Ther Adv Hematol. 2019;10:2040620719847059.

    PubMed  PubMed Central  Google Scholar 

  91. Wang H, Li Y, Lv N, Li Y, Wang L, Yu L. Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann Hematol. 2018;97(11):2025–38.

    PubMed  Google Scholar 

  92. Malcovati L, Hellström-Lindberg E, Bowen D, Adès L, Cermak J, Del Cañizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943–64.

    PubMed  PubMed Central  Google Scholar 

  93. Issa JJ, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015;16(9):1099–110.

    PubMed  PubMed Central  Google Scholar 

  94. Bewersdorf JP, Shallis R, Stahl M, Zeidan AM. Epigenetic therapy combinations in acute myeloid leukemia: what are the options? Ther Adv Hematol. 2019;10:2040620718816698.

    PubMed  PubMed Central  Google Scholar 

  95. Issa JP, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res. 2009;15(12):3938–46.

    PubMed  PubMed Central  Google Scholar 

  96. Cseh A, Niemeyer CM, Yoshimi A, Dworzak M, Hasle H, van den Heuvel-Eibrink MM, et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG-MDS study group. Blood. 2015;125(14):2311–3.

    PubMed  Google Scholar 

  97. DiNardo CD, Daver N, Jain N, Pemmaraju N, Bueso-Ramos C, Yin CC, et al. Myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN, U): natural history and clinical outcome by treatment strategy. Leukemia. 2014;28(4):958–61.

    PubMed  PubMed Central  Google Scholar 

  98. Clara JA, Sallman DA, Padron E. Clinical management of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. Cancer Biol Med. 2016;13(3):360–72.

    PubMed  PubMed Central  Google Scholar 

  99. Giammarco S, Chiusolo P, Piccirillo N, Di Giovanni A, Metafuni E, Laurenti L, et al. Hyperleukocytosis and leukostasis: management of a medical emergency. Expert Rev Hematol. 2017;10(2):147–54.

    PubMed  Google Scholar 

  100. Scott BL. Existing agents, novel agents, or transplantation for high-risk MDS. Hematology. 2020;2020(1):411–7.

    PubMed  PubMed Central  Google Scholar 

  101. Garcia-Manero G, Roboz G, Walsh K, Kantarjian H, Ritchie E, Kropf P, et al. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes: phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019;6(6):e317–e27.

    PubMed  PubMed Central  Google Scholar 

  102. Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ, et al. S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther. 2010;9(5):1443–50.

    PubMed  PubMed Central  Google Scholar 

  103. Sébert M, Renneville A, Bally C, Peterlin P, Beyne-Rauzy O, Legros L, et al. A phase II study of guadecitabine in higher-risk myelodysplastic syndrome and low blast count acute myeloid leukemia after azacitidine failure. Haematologica. 2019;104(8):1565–71.

    PubMed  PubMed Central  Google Scholar 

  104. Garcia-Manero G, Sasaki K, Montalban-Bravo G, Bodden KR, Bose P, Alvarado Y, et al. Final report of a phase II study of guadecitabine (SGI-110) in patients (pts) with previously untreated myelodysplastic syndrome (MDS). Blood. 2018;132(Supplement 1):232.

    Google Scholar 

  105. Bewersdorf JP, Zeidan AM. Management of higher risk myelodysplastic syndromes after hypomethylating agents failure: are we about to exit the black hole? Expert Rev Hematol. 2020;13(10):1131–42.

    PubMed  Google Scholar 

  106. Garcia-Manero G, Griffiths EA, Steensma DP, Roboz GJ, Wells R, McCloskey J, et al. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood. 2020;136(6):674–83.

    PubMed  PubMed Central  Google Scholar 

  107. de Lima M, Oran B, Champlin RE, Papadopoulos EB, Giralt SA, Scott BL, et al. CC-486 maintenance after stem cell transplantation in patients with acute myeloid leukemia or myelodysplastic syndromes. Biol Blood Marrow Transplant. 2018;24(10):2017–24.

    PubMed  PubMed Central  Google Scholar 

  108. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, Kiani A, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9.

    PubMed  Google Scholar 

  109. Wei AH, Döhner H, Pocock C, Montesinos P, Afanasyev B, Dombret H, et al. The QUAZAR AML-001 maintenance trial: results of a phase III international, randomized, double-blind, placebo-controlled study of CC-486 (oral formulation of azacitidine) in patients with acute myeloid leukemia (AML) in first remission. Blood. 2019;134(Supplement_2):LBA-3–LBA.

    Google Scholar 

  110. Garcia-Manero G, Gore SD, Kambhampati S, Scott B, Tefferi A, Cogle CR, et al. Efficacy and safety of extended dosing schedules of CC-486 (oral azacitidine) in patients with lower-risk myelodysplastic syndromes. Leukemia. 2016;30(4):889–96.

    PubMed  PubMed Central  Google Scholar 

  111. Garcia-Manero G, Scott BL, Cogle CR, Boyd TE, Kambhampati S, Hetzer J, et al. CC-486 (oral azacitidine) in patients with myelodysplastic syndromes with pretreatment thrombocytopenia. Leuk Res. 2018;72:79–85.

    PubMed  Google Scholar 

  112. Savona MR, Kolibaba K, Conkling P, Kingsley EC, Becerra C, Morris JC, et al. Extended dosing with CC-486 (oral azacitidine) in patients with myeloid malignancies. Am J Hematol. 2018;93(10):1199–206.

    PubMed  PubMed Central  Google Scholar 

  113. Swoboda DM, Gesiotto Q, Sallman DA. Novel therapies in myelodysplastic syndromes. Curr Opin Hematol. 2020;27(2):58–65.

    PubMed  Google Scholar 

  114. Oran B, Lima M, Garcia-Manero G, Thall P, Lin R, Alousi A, et al. Maintenance with 5-Azacytidine for acute myeloid Leukemia and myelodysplastic syndrome patients. Blood. 2018;132:971.

    Google Scholar 

  115. Montalban-Bravo G, Garcia-Manero G, Jabbour E. Therapeutic choices after hypomethylating agent resistance for myelodysplastic syndromes. Curr Opin Hematol. 2018;25(2):146–53.

    PubMed  Google Scholar 

  116. Camiener GW, Smith CG. Studies of the enzymatic deamination of cytosine arabinoside. I. enzyme distribution and species specificity. Biochem Pharmacol. 1965;14(10):1405–16.

    PubMed  Google Scholar 

  117. Odenike O. Incorporating novel approaches in the management of MDS beyond conventional hypomethylating agents. Hematology Am Soc Hematol Educ Program. 2017;2017(1):460–9.

    PubMed  PubMed Central  Google Scholar 

  118. Savona MR, Odenike O, Amrein PC, Steensma DP, DeZern AE, Michaelis LC, et al. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes: a multicentre, open-label, dose-escalation, phase 1 study. Lancet Haematol. 2019;6(4):e194–203.

    PubMed  Google Scholar 

  119. Garcia-Manero G, Griffiths EA, Roboz GJ, Busque L, Wells RA, Odenike O, et al. A phase 2 dose-confirmation study of oral ASTX727, a combination of oral decitabine with a cytidine deaminase inhibitor (CDAi) cedazuridine (E7727), in subjects with myelodysplastic syndromes (MDS). Blood. 2017;130(Supplement 1):4274.

    Google Scholar 

  120. Garcia-Manero G, McCloskey J, Griffiths EA, Yee KWL, Zeidan AM, Al-Kali A, et al. Pharmacokinetic exposure equivalence and preliminary efficacy and safety from a randomized cross over phase 3 study (ASCERTAIN study) of an oral hypomethylating agent ASTX727 (cedazuridine/decitabine) compared to IV decitabine. Blood. 2019;134(Supplement_1):846.

    Google Scholar 

  121. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8(3):705–11.

    PubMed  Google Scholar 

  122. Garcia JS. Prospects for venetoclax in myelodysplastic syndromes. Hematol Oncol Clin North Am. 2020;34(2):441–8.

    PubMed  Google Scholar 

  123. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324–37.

    PubMed  PubMed Central  Google Scholar 

  124. Jilg S, Reidel V, Müller-Thomas C, König J, Schauwecker J, Höckendorf U, et al. Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients. Leukemia. 2016;30(1):112–23.

    PubMed  Google Scholar 

  125. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the Bcl-2–related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood. 2000;96(12):3932–8.

    PubMed  Google Scholar 

  126. Tacke F, Marini IIIFC, Zhao S, McQueen T, Konopleva M, Ruvolo PP, et al. Expression of inducible Bcl-XS in myeloid leukemia: compensatory upregulation of Bcl-XL and Bcl-2 prevents apoptosis and chemosensitization. Cancer Biol Ther. 2004;3(3):340–7.

    PubMed  Google Scholar 

  127. Khan N, Hills RK, Knapper S, Steadman L, Qureshi U, Rector JL, et al. Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia. PLoS One. 2016;11(9):e0163291.

    PubMed  PubMed Central  Google Scholar 

  128. Lagadinou Eleni D, Sach A, Callahan K, Rossi Randall M, Neering Sarah J, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41.

    PubMed  PubMed Central  Google Scholar 

  129. Maiti A, DiNardo CD, Cortes JE, Borthakur G, Pemmaraju N, Benton CB, et al. Interim analysis of phase II study of venetoclax with 10-day decitabine (DEC10-VEN) in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2018;132(Supplement 1):286.

    Google Scholar 

  130. Bewersdorf JP, Giri S, Wang R, Williams RT, Tallman MS, Zeidan AM, et al. Venetoclax as monotherapy and in combination with hypomethylating agents or low dose cytarabine in relapsed and treatment refractory acute myeloid leukemia: a systematic review and meta-analysis. Haematologica. 2020;105(11):2659–63.

    PubMed  PubMed Central  Google Scholar 

  131. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.

    PubMed  PubMed Central  Google Scholar 

  132. Wei AH, Strickland SA Jr, Hou JZ, Fiedler W, Lin TL, Walter RB, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37(15):1277–84.

    PubMed  PubMed Central  Google Scholar 

  133. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–81.

    PubMed  Google Scholar 

  134. Jilg S, Hauch RT, Kauschinger J, Buschhorn L, Odinius TO, Dill V, et al. Venetoclax with azacitidine targets refractory MDS but spares healthy hematopoiesis at tailored dose. Exp Hematol Oncol. 2019;8:9.

    PubMed  PubMed Central  Google Scholar 

  135. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24(12):1859–66.

    PubMed  PubMed Central  Google Scholar 

  136. Jehangir W, Karabachev A, Jahangir T, Umyarova E. Myelodysplastic syndrome with transfusion dependence treated with venetoclax. Case Rep Hematol. 2020;2020:9031067.

    PubMed  PubMed Central  Google Scholar 

  137. Zeidan AM, Pollyea DA, Garcia JS, Brunner A, Roncolato F, Borate U, et al. A phase 1b study evaluating the safety and efficacy of venetoclax as monotherapy or in combination with azacitidine for the treatment of relapsed/refractory myelodysplastic syndrome. Blood. 2019;134(Supplement_1):565.

    Google Scholar 

  138. Wei AH, Garcia JS, Borate U, Fong CY, Baer MR, Nolte F, et al. A phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-Naïve patients with higher-risk myelodysplastic syndrome. Blood. 2019;134(Supplement_1):568.

    Google Scholar 

  139. Ball BJ, Famulare CA, Stein EM, Tallman MS, Derkach A, Roshal M, et al. Venetoclax and hypomethylating agents (HMAs) induce high response rates in MDS, including patients after HMA therapy failure. Blood Adv. 2020;4(13):2866–70.

    PubMed  PubMed Central  Google Scholar 

  140. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29(9):1190–7.

    PubMed  PubMed Central  Google Scholar 

  141. Thol F, Gabdoulline R, Liebich A, Klement P, Schiller J, Kandziora C, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132(16):1703–13.

    PubMed  Google Scholar 

  142. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.

    PubMed  Google Scholar 

  143. Dor Y, Porat R, Keshet E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol. 2001;280(6):C1367–74.

    PubMed  Google Scholar 

  144. Medinger M, Passweg J. Role of tumour angiogenesis in haematological malignancies. Swiss Med Wkly. 2014;144:w14050.

    PubMed  Google Scholar 

  145. Medinger M, Skoda R, Gratwohl A, Theocharides A, Buser A, Heim D, et al. Angiogenesis and vascular endothelial growth factor−/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Br J Haematol. 2009;146(2):150–7.

    PubMed  Google Scholar 

  146. Casella I, Feccia T, Chelucci C, Samoggia P, Castelli G, Guerriero R, et al. Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor. Blood. 2003;101(4):1316–23.

    PubMed  Google Scholar 

  147. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    PubMed  Google Scholar 

  148. Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem. 2001;276(5):3222–30.

    PubMed  Google Scholar 

  149. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193(9):1005–14.

    PubMed  PubMed Central  Google Scholar 

  150. Bellamy WT, Richter L, Frutiger Y, Grogan TM. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res. 1999;59(3):728–33.

    PubMed  Google Scholar 

  151. Yang JG, Wang LL, Ma DC. Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases. Br J Haematol. 2018;180(3):321–34.

    PubMed  Google Scholar 

  152. Wimazal F, Krauth M-T, Vales A, Böhm A, Agis H, Sonneck K, et al. Immunohistochemical detection of vascular endothelial growth factor (VEGF) in the bone marrow in patients with myelodysplastic syndromes: correlation between VEGF expression and the FAB category. Leuk Lymphoma. 2006;47(3):451–60.

    PubMed  Google Scholar 

  153. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest. 2000;106(4):511–21.

    PubMed  PubMed Central  Google Scholar 

  154. List AF, Baker AF, Green S, Bellamy W. Lenalidomide: targeted anemia therapy for myelodysplastic syndromes. Cancer Control. 2006;13(Suppl):4–11.

    PubMed  Google Scholar 

  155. Kotla V, Goel S, Nischal S, Heuck C, Vivek K, Das B, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2(1):36.

    PubMed  PubMed Central  Google Scholar 

  156. Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999;163(1):380–6.

    PubMed  Google Scholar 

  157. Nicolosi M, Mudireddy M, Vallapureddy R, Gangat N, Tefferi A, Patnaik MM. Lenalidomide therapy in patients with myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T). Am J Hematol. 2018;93(1):E27–30.

    PubMed  Google Scholar 

  158. Alshaban A, Padilla O, Philipovskiy A, Corral J, McAlice M, Gaur S. Lenalidomide induced durable remission in a patient with MDS/MPN-with ring sideroblasts and thrombocytosis with associated 5q- syndrome. Leuk Res Rep. 2018;10:37–40.

    PubMed  PubMed Central  Google Scholar 

  159. Naqvi K, Sasaki K, Montalban-Bravo G, Teach MS, Pierce SA, Kantarjian HM, et al. Characteristics and role of lenalidomide therapy in patients with myelodysplastic/myeloproliferative neoplasm with ring Sideroblasts and thrombocytosis. Blood. 2018;132(Supplement 1):5513.

    Google Scholar 

  160. Divoux M, Plocque A, Sevin M, Voillat L, Feugier P, Guerci-Bresler A, et al. Efficacy of lenalidomide in myelodysplastic/myeloproliferative neoplasms with ring sideroblasts and an extreme platelet count. Clin Case Rep. 2020;8(9):1774–80.

    PubMed  PubMed Central  Google Scholar 

  161. Huls G, Mulder AB, Rosati S, van de Loosdrecht AA, Vellenga E, de Wolf JT. Efficacy of single-agent lenalidomide in patients with JAK2 (V617F) mutated refractory anemia with ring sideroblasts and thrombocytosis. Blood. 2010;116(2):180–2.

    PubMed  Google Scholar 

  162. Taylor G, Culligan D, Vickers MA. Refractory anemia with ring sideroblasts associated with marked thrombocytosis complicated by massive splenomegaly treated with lenalidomide resulting in resolution of splenomegaly but severe and prolonged pancytopenia. Case Rep Hematol. 2013;2013:718480.

    PubMed  PubMed Central  Google Scholar 

  163. Caers J, Hafraoui K, Keutgens A, Caberg JH, Lambert F, Tassin F, et al. Haematological and molecular responses in refractory anaemia with ring sideroblasts and thrombocytosis treated with lenalidomide. Eur J Haematol. 2014;92(2):179–80.

    PubMed  Google Scholar 

  164. Zhang M, You Y, Li X, He Y, Zheng J, Li W, et al. Response to lenalidomide of a patient with t(2;3)(p23;q29) and JAK2 non-mutated refractory anemia with ring sideroblasts and thrombocytosis. Leuk Lymphoma. 2013;54(7):1544–6.

    PubMed  Google Scholar 

  165. Nichele I, Ruggeri M, Rodeghiero F. Effectiveness of lenalidomide in a patient with refractory anemia with ring sideroblasts and thrombocytosis with JAK2 (V617F) mutation. Am J Hematol. 2015;90(8):E148–9.

    PubMed  Google Scholar 

  166. Keen R, Pantin J, Savage N, Dainer PM. Treatment of refractory anemia with ring sideroblasts associated with marked thrombocytosis with lenalidomide in a patient testing negative for 5q deletion and JAK2 V617F and MPL W515K/L mutations. Hematol Rep. 2016;8(4):6592.

    PubMed  PubMed Central  Google Scholar 

  167. Sangkhae V, Etheridge SL, Kaushansky K, Hitchcock IS. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Blood. 2014;124(26):3956–63.

    PubMed  PubMed Central  Google Scholar 

  168. Geddis AE, Linden HM, Kaushansky K. Thrombopoietin: a pan-hematopoietic cytokine. Cytokine Growth Factor Rev. 2002;13(1):61–73.

    PubMed  Google Scholar 

  169. Sattler M, Durstin MA, Frank DA, Okuda K, Kaushansky K, Salgia R, et al. The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp Hematol. 1995;23(9):1040–8.

    PubMed  Google Scholar 

  170. Kaushansky K. Thrombopoietin and the hematopoietic stem cell. Ann N Y Acad Sci. 2005;1044:139–41.

    PubMed  Google Scholar 

  171. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Månsson R, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007;1(6):671–84.

    PubMed  Google Scholar 

  172. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996;87(6):2162–70.

    PubMed  Google Scholar 

  173. Chou FS, Mulloy JC. The thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. J Cell Biochem. 2011;112(6):1491–8.

    PubMed  Google Scholar 

  174. Geddis AE, Fox NE, Kaushansky K. Phosphatidylinositol 3-kinase is necessary but not sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as well as in primary megakaryocytic progenitors. J Biol Chem. 2001;276(37):34473–9.

    PubMed  Google Scholar 

  175. Bacon CM, Tortolani PJ, Shimosaka A, Rees RC, Longo DL, O’Shea JJ. Thrombopoietin (TPO) induces tyrosine phosphorylation and activation of STAT5 and STAT3. FEBS Lett. 1995;370(1–2):63–8.

    PubMed  Google Scholar 

  176. Debili N, Wendling F, Cosman D, Titeux M, Florindo C, Dusanter-Fourt I, et al. The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. Blood. 1995;85(2):391–401.

    PubMed  Google Scholar 

  177. Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet. 2005;1(3):e28.

    PubMed  PubMed Central  Google Scholar 

  178. Patnaik MM, Padron E, LaBorde RR, Lasho TL, Finke CM, Hanson CA, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27(7):1504–10.

    PubMed  Google Scholar 

  179. Mughal TI, Cross NCP, Padron E, Tiu RV, Savona M, Malcovati L, et al. An international MDS/MPN working group’s perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2015;100(9):1117–30.

    PubMed  PubMed Central  Google Scholar 

  180. Raslova H, Vainchenker W, Plo I. Eltrombopag, a potent stimulator of megakaryopoiesis. Haematologica. 2016;101(12):1443–5.

    PubMed  PubMed Central  Google Scholar 

  181. Ramadan H, Duong VH, Al Ali NH, Padron E, Zhang L, Lancet JE, et al. Eltrombopag use in chronic myelomonocytic leukemia (CMML) patients: a cautionary tale. Blood. 2015;126(23):2897.

    Google Scholar 

  182. Itzykson R, Lambert J, Barbieri D, Gruson B, Thepot S, Braun T, et al. A phase II trial of eltrombopag in chronic myelomonocytic leukemia (CMML) with thrombocytopenia. Blood. 2017;130(Supplement 1):4266.

    Google Scholar 

  183. Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood Res. 2014;49(4):216–27.

    PubMed  PubMed Central  Google Scholar 

  184. Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361(19):1872–85.

    PubMed  Google Scholar 

  185. Yen K, Travins J, Wang F, David MD, Artin E, Straley K, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 2017;7(5):478–93.

    PubMed  Google Scholar 

  186. Medeiros BC, Fathi AT, Dinardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017;31(2):272–81.

    PubMed  Google Scholar 

  187. DiNardo CD, Jabbour E, Ravandi F, Takahashi K, Daver N, Routbort M, et al. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia. 2016;30(4):980–4.

    PubMed  Google Scholar 

  188. Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28(9):1774–83.

    PubMed  PubMed Central  Google Scholar 

  189. Pardanani A, Patnaik MM, Lasho TL, Mai M, Knudson RA, Finke C, et al. Recurrent IDH mutations in high-risk myelodysplastic syndrome or acute myeloid leukemia with isolated del(5q). Leukemia. 2010;24(7):1370–2.

    PubMed  Google Scholar 

  190. Patnaik MM, Hanson CA, Hodnefield JM, Lasho TL, Finke CM, Knudson RA, et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia. 2012;26(1):101–5.

    PubMed  Google Scholar 

  191. Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B, et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia. 2010;24(5):1094–6.

    PubMed  Google Scholar 

  192. Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95(10):1668–74.

    PubMed  PubMed Central  Google Scholar 

  193. Lin CC, Hou HA, Chou WC, Kuo YY, Liu CY, Chen CY, et al. IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution. Am J Hematol. 2014;89(2):137–44.

    PubMed  Google Scholar 

  194. Foran JM, DiNardo CD, Watts JM, Stein EM, De Botton S, Fathi AT, et al. Ivosidenib (AG-120) in patients with IDH1-mutant relapsed/refractory myelodysplastic syndrome: updated enrollment of a phase 1 dose escalation and expansion study. Blood. 2019;134(Supplement_1):4254.

    Google Scholar 

  195. Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Swords RT, Roboz GJ, et al. Enasidenib (AG-221), a potent oral inhibitor of mutant isocitrate dehydrogenase 2 (IDH2) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS). Blood. 2016;128(22):343.

    Google Scholar 

  196. Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Roboz GJ, Collins R, et al. Enasidenib in patients with mutant IDH2 myelodysplastic syndromes: a phase 1 subgroup analysis of the multicentre, AG221-C-001 trial. Lancet Haematol. 2020;7(4):e309–e19.

    PubMed  Google Scholar 

  197. Richard-Carpentier G, DeZern AE, Takahashi K, Konopleva MY, Loghavi S, Masarova L, et al. Preliminary results from the phase II study of the IDH2-inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS). Blood. 2019;134(Supplement_1):678.

    Google Scholar 

  198. Cortes JE, Wang ES, Watts JM, Lee S, Baer MR, Dao K-H, et al. Olutasidenib (FT-2102) induces rapid remissions in patients with IDH1-mutant myelodysplastic syndrome: results of phase 1/2 single agent treatment and combination with azacitidine. Blood. 2019;134(Supplement_1):674.

    Google Scholar 

  199. Cumbo C, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. TP53 in myelodysplastic syndromes: recent biological and clinical findings. Int J Mol Sci. 2020;21(10):3432.

    PubMed  PubMed Central  Google Scholar 

  200. Huang F, Chen Y, Zhu Y, Qiao C, Qian S, Li J, et al. TP53 abnormality in myelodysplastic syndrome. Blood. 2019;134(Supplement_1):5410.

    Google Scholar 

  201. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008.

    PubMed  PubMed Central  Google Scholar 

  202. Aubrey BJ, Strasser A, Kelly GL. Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb Perspect Med. 2016;6(5):a026062.

    PubMed  PubMed Central  Google Scholar 

  203. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31.

    PubMed  Google Scholar 

  204. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci. 2010;107(16):7455–60.

    PubMed  PubMed Central  Google Scholar 

  205. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci. 2010;107(16):7461–6.

    PubMed  PubMed Central  Google Scholar 

  206. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–20.

    PubMed  Google Scholar 

  207. Jonveaux P, Fenaux P, Quiquandon I, Pignon JM, Laï JL, Loucheux-Lefebvre MH, et al. Mutations in the p53 gene in myelodysplastic syndromes. Oncogene. 1991;6(12):2243–7.

    PubMed  Google Scholar 

  208. Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(5):504–15.

    Google Scholar 

  209. Kulasekararaj AG, Smith AE, Mian SA, Mohamedali AM, Krishnamurthy P, Lea NC, et al. TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol. 2013;160(5):660–72.

    PubMed  Google Scholar 

  210. Bally C, Adès L, Renneville A, Sebert M, Eclache V, Preudhomme C, et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res. 2014;38(7):751–5.

    PubMed  Google Scholar 

  211. Bernard E, Nannya Y, Yoshizato T, Hasserjian RP, Saiki R, Shiozawa Y, et al. TP53 state dictates genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Blood. 2019;134(Supplement_1):675.

    Google Scholar 

  212. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.

    PubMed  Google Scholar 

  213. Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006;127(7):1323–34.

    PubMed  Google Scholar 

  214. Bykov VJ, Zhang Q, Zhang M, Ceder S, Abrahmsen L, Wiman KG. Targeting of mutant p53 and the cellular redox balance by APR-246 as a strategy for efficient cancer therapy. Front Oncol. 2016;6:21.

    PubMed  PubMed Central  Google Scholar 

  215. Lambert JM, Gorzov P, Veprintsev DB, Söderqvist M, Segerbäck D, Bergman J, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15(5):376–88.

    PubMed  Google Scholar 

  216. Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, et al. Phase 2 results of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia (AML). Blood. 2019;134(Supplement_1):676.

    Google Scholar 

  217. Sallman DA, DeZern AE, Steensma DP, Sweet KL, Cluzeau T, Sekeres MA, et al. Phase 1b/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Blood. 2018;132(Supplement 1):3091.

    Google Scholar 

  218. Castellano E, Downward J. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer. 2011;2(3):261–74.

    PubMed  PubMed Central  Google Scholar 

  219. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348(6297):125–32.

    PubMed  Google Scholar 

  220. Wittinghofer A, Pai EF. The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci. 1991;16(10):382–7.

    PubMed  Google Scholar 

  221. Castellano E, Downward J. Role of RAS in the regulation of PI 3-kinase. Curr Top Microbiol Immunol. 2010;346:143–69.

    PubMed  Google Scholar 

  222. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    PubMed  Google Scholar 

  223. Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res. 2011;49(1–3):248–68.

    PubMed  Google Scholar 

  224. Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Bäsecke J, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25(7):1080–94.

    PubMed  Google Scholar 

  225. Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol. 1999;17(11):3631–52.

    PubMed  Google Scholar 

  226. Jhanwar SC. Genetic and epigenetic pathways in myelodysplastic syndromes: a brief overview. Adv Biol Regul. 2015;58:28–37.

    PubMed  Google Scholar 

  227. Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG, et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia. 2010;24(4):756–64.

    PubMed  Google Scholar 

  228. Akutagawa J, Huang TQ, Epstein I, Chang T, Quirindongo-Crespo M, Cottonham CL, et al. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia. 2016;30(6):1335–43.

    PubMed  PubMed Central  Google Scholar 

  229. Patnaik MM, Lasho TL. Genomics of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. Hematology. 2020;2020(1):450–9.

    PubMed  PubMed Central  Google Scholar 

  230. Itzykson R, Fenaux P, Bowen D, Cross NCP, Cortes J, De Witte T, et al. Diagnosis and treatment of chronic myelomonocytic leukemias in adults: recommendations from the European hematology association and the European LeukemiaNet. Hema. 2018;2(6):e150.

    Google Scholar 

  231. Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47(11):1326–33.

    PubMed  PubMed Central  Google Scholar 

  232. Stieglitz E, Troup CB, Gelston LC, Haliburton J, Chow ED, Yu KB, et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood. 2015;125(3):516–24.

    PubMed  PubMed Central  Google Scholar 

  233. Patnaik MM, Barraco D, Lasho TL, Finke CM, Reichard K, Hoversten KP, et al. Targeted next generation sequencing and identification of risk factors in World Health Organization defined atypical chronic myeloid leukemia. Am J Hematol. 2017;92(6):542–8.

    PubMed  PubMed Central  Google Scholar 

  234. Mangaonkar AA, Swoboda DM, Coltro G, Lasho TL, Novotny PJ, Pophali P, et al. Clinicopathologic characteristics, prognostication and treatment outcomes for myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U): Mayo Clinic-Moffitt cancer center study of 135 consecutive patients. Leukemia. 2020;34(2):656–61.

    PubMed  Google Scholar 

  235. Bose P, Nazha A, Komrokji RS, Patel KP, Pierce SA, Al-Ali N, et al. Mutational landscape of myelodysplastic/myeloproliferative neoplasm-unclassifiable. Blood. 2018;132(19):2100–3.

    PubMed  PubMed Central  Google Scholar 

  236. Cargo C, Cullen M, Taylor J, Short M, Glover P, Van Hoppe S, et al. The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood. 2019;133(12):1325–34.

    PubMed  Google Scholar 

  237. Meggendorfer M, Jeromin S, Haferlach C, Kern W, Haferlach T. The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2018;103(5):e192–e5.

    PubMed  PubMed Central  Google Scholar 

  238. Navada SC, Fruchtman SM, Odchimar-Reissig R, Demakos EP, Petrone ME, Zbyszewski PS, et al. A phase 1/2 study of rigosertib in patients with myelodysplastic syndromes (MDS) and MDS progressed to acute myeloid leukemia. Leuk Res. 2018;64:10–6.

    PubMed  Google Scholar 

  239. Balaian E, Weidner H, Wobus M, Baschant U, Jacobi A, Mies A, et al. Effects of rigosertib on the osteo-hematopoietic niche in myelodysplastic syndromes. Ann Hematol. 2019;98(9):2063–72.

    PubMed  Google Scholar 

  240. Komrokji RS, Raza A, Lancet JE, Ren C, Taft D, Maniar M, et al. Phase I clinical trial of oral rigosertib in patients with myelodysplastic syndromes. Br J Haematol. 2013;162(4):517–24.

    PubMed  PubMed Central  Google Scholar 

  241. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, et al. A small molecule RAS-mimetic disrupts RAS Association with effector proteins to block signaling. Cell. 2016;165(3):643–55.

    PubMed  PubMed Central  Google Scholar 

  242. Reddy MV, Venkatapuram P, Mallireddigari MR, Pallela VR, Cosenza SC, Robell KA, et al. Discovery of a clinical stage multi-kinase inhibitor sodium (E)-2-{2-methoxy-5-[(2′,4′,6′-trimethoxystyrylsulfonyl)methyl]phenylamino}acetate (ON 01910.Na): synthesis, structure-activity relationship, and biological activity. J Med Chem. 2011;54(18):6254–76.

    PubMed  PubMed Central  Google Scholar 

  243. Gumireddy K, Reddy MV, Cosenza SC, Boominathan R, Baker SJ, Papathi N, et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7(3):275–86.

    PubMed  Google Scholar 

  244. Prasad A, Park IW, Allen H, Zhang X, Reddy MV, Boominathan R, et al. Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene. 2009;28(12):1518–28.

    PubMed  Google Scholar 

  245. Chun AW, Cosenza SC, Taft DR, Maniar M. Preclinical pharmacokinetics and in vitro activity of ON 01910.Na, a novel anti-cancer agent. Cancer Chemother Pharmacol. 2009;65(1):177–86.

    PubMed  Google Scholar 

  246. Olnes MJ, Shenoy A, Weinstein B, Pfannes L, Loeliger K, Tucker Z, et al. Directed therapy for patients with myelodysplastic syndromes (MDS) by suppression of cyclin D1 with ON 01910.Na. Leuk Res. 2012;36(8):982–9.

    PubMed  PubMed Central  Google Scholar 

  247. Soper DM, Huang Y-W, Wilhelm F, Cosenza SC, Reddy EP, Cesano A, et al. Single cell network profiling (SCNP) to evaluate the mechanism of action of on 01910.Na, a novel clinical trial stage compound. Blood. 2009;114(22):3827.

    Google Scholar 

  248. Navada SC, Garcia-Manero G, Atallah EL, Rajeh MN, Shammo JM, Griffiths EA, et al. Phase II study of oral rigosertib combined with azacitidine (AZA) as first line therapy in patients (Pts) with higher-risk myelodysplastic syndromes (HR-MDS). Blood. 2019;134(Supplement_1):566.

    Google Scholar 

  249. Navada SC, Garcia-Manero G, Atallah EL, Rajeh MN, Shammo JM, Griffiths EA, et al. Phase 2 expansion study of oral rigosertib combined with azacitidine (AZA) in patients (Pts) with higher-risk (HR) myelodysplastic syndromes (MDS): efficacy and safety results in HMA treatment Naïve & relapsed (Rel)/Refractory (Ref) patients. Blood. 2018;132(Suppl. 1):230.

    Google Scholar 

  250. Silverman LR, Greenberg P, Raza A, Olnes MJ, Holland JF, Reddy P, et al. Clinical activity and safety of the dual pathway inhibitor rigosertib for higher risk myelodysplastic syndromes following DNA methyltransferase inhibitor therapy. Hematol Oncol. 2015;33(2):57–66.

    PubMed  Google Scholar 

  251. Garcia-Manero G, Fenaux P, Al-Kali A, Baer MR, Sekeres MA, Roboz GJ, et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): a randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(4):496–508.

    PubMed  Google Scholar 

  252. Cox AD, Der CJ, Philips MR. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin Cancer Res. 2015;21(8):1819–27.

    PubMed  PubMed Central  Google Scholar 

  253. Kotsianidis I, Bazdiara I, Anastasiadis A, Spanoudakis E, Pantelidou D, Margaritis D, et al. In vitro effects of the farnesyltransferase inhibitor tipifarnib on myelodysplastic syndrome progenitors. Acta Haematol. 2008;120(1):51–6.

    PubMed  Google Scholar 

  254. End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 2001;61(1):131–7.

    PubMed  Google Scholar 

  255. Cox AD, Der CJ. Farnesyltransferase inhibitors: promises and realities. Curr Opin Pharmacol. 2002;2(4):388–93.

    PubMed  Google Scholar 

  256. Lancet JE, Karp JE. Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood. 2003;102(12):3880–9.

    PubMed  Google Scholar 

  257. Raponi M, Belly RT, Karp JE, Lancet JE, Atkins D, Wang Y. Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia. BMC Cancer. 2004;4:56.

    PubMed  PubMed Central  Google Scholar 

  258. Raponi M, Harousseau JL, Lancet JE, Löwenberg B, Stone R, Zhang Y, et al. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res. 2007;13(7):2254–60.

    PubMed  Google Scholar 

  259. Stieglitz E, Ward AF, Gerbing RB, Alonzo TA, Arceci RJ, Liu YL, et al. Phase II/III trial of a pre-transplant farnesyl transferase inhibitor in juvenile myelomonocytic leukemia: a report from the children’s oncology group. Pediatr Blood Cancer. 2015;62(4):629–36.

    PubMed  Google Scholar 

  260. Patnaik MM, Sallman DA, Sekeres MA, Luger S, Bejar R, Hobbs GS, et al. Preliminary results from an open-label, phase 2 study of tipifarnib in chronic myelomonocytic leukemia (CMML). Blood. 2017;130(Supplement 1):2963.

    Google Scholar 

  261. Chang T, Krisman K, Theobald EH, Xu J, Akutagawa J, Lauchle JO, et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest. 2013;123(1):335–9.

    PubMed  Google Scholar 

  262. Lyubynska N, Gorman MF, Lauchle JO, Hong WX, Akutagawa JK, Shannon K, et al. A MEK inhibitor abrogates myeloproliferative disease in KRAS mutant mice. Sci Transl Med. 2011;3(76):76ra27.

    PubMed  PubMed Central  Google Scholar 

  263. Kloos A, Mintzas K, Winckler L, Gabdoulline R, Alwie Y, Jyotsana N, et al. Effective drug treatment identified by in vivo screening in a transplantable patient-derived xenograft model of chronic myelomonocytic leukemia. Leukemia. 2020;34(11):2951–63.

    PubMed  PubMed Central  Google Scholar 

  264. Borthakur G, Popplewell L, Boyiadzis M, Foran J, Platzbecker U, Vey N, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122(12):1871–9.

    PubMed  Google Scholar 

  265. Springuel L, Renauld J-C, Knoops L. JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica. 2015;100(10):1240–53.

    PubMed  PubMed Central  Google Scholar 

  266. Ostojic A, Vrhovac R, Verstovsek S. Ruxolitinib: a new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol. 2011;7(9):1035–43.

    PubMed  Google Scholar 

  267. Mughal TI, Girnius S, Rosen ST, Kumar S, Wiestner A, Abdel-Wahab O, et al. Emerging therapeutic paradigms to target the dysregulated janus kinase/signal transducer and activator of transcription pathway in hematological malignancies. Leuk Lymphoma. 2014;55(9):1968–79.

    PubMed  PubMed Central  Google Scholar 

  268. Wang SA, Hasserjian RP, Loew JM, Sechman EV, Jones D, Hao S, et al. Refractory anemia with ringed sideroblasts associated with marked thrombocytosis harbors JAK2 mutation and shows overlapping myeloproliferative and myelodysplastic features. Leukemia. 2006;20(9):1641–4.

    PubMed  Google Scholar 

  269. Atallah E, Nussenzveig R, Yin CC, Bueso-Ramos C, Tam C, Manshouri T, et al. Prognostic interaction between thrombocytosis and JAK2 V617F mutation in the WHO subcategories of myelodysplastic/myeloproliferative disease-unclassifiable and refractory anemia with ringed sideroblasts and marked thrombocytosis. Leukemia. 2008;22(6):1295–8.

    PubMed  Google Scholar 

  270. Jekarl DW, Han SB, Kim M, Lim J, Oh EJ, Kim Y, et al. JAK2 V617F mutation in myelodysplastic syndrome, myelodysplastic syndrome/myeloproliferative neoplasm, unclassifiable, refractory anemia with ring sideroblasts with thrombocytosis, and acute myeloid leukemia. Korean J Hematol. 2010;45(1):46–50.

    PubMed  PubMed Central  Google Scholar 

  271. Nam M-H, Kim J-Y, Yoon S-Y, Lim CS, Lee CK, Cho Y, et al. JAK2 V617F mutation in atypical chronic myeloid leukemia. Blood. 2010;116(21):5069.

    Google Scholar 

  272. Gur HD, Loghavi S, Garcia-Manero G, Routbort M, Kanagal-Shamanna R, Quesada A, et al. Chronic myelomonocytic leukemia with fibrosis is a distinct disease subset with myeloproliferative features and frequent JAK2 p.V617F mutations. Am J Surg Pathol. 2018;42(6):799–806.

    PubMed  Google Scholar 

  273. Zecca M, Bergamaschi G, Kratz C, Bergsträßer E, Danesino C, De Filippi P, et al. JAK2 V617F mutation is a rare event in juvenile myelomonocytic leukemia. Leukemia. 2007;21(2):367–9.

    PubMed  Google Scholar 

  274. Mascarenhas J, Hoffman R. Ruxolitinib: the first FDA approved therapy for the treatment of myelofibrosis. Clin Cancer Res. 2012;18(11):3008–14.

    PubMed  Google Scholar 

  275. Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res. 2018;7:82.

    PubMed  PubMed Central  Google Scholar 

  276. Loh ML, Tasian SK, Rabin KR, Brown P, Magoon D, Reid JM, et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: a children’s oncology group phase 1 consortium study (ADVL1011). Pediatr Blood Cancer. 2015;62(10):1717–24.

    PubMed  PubMed Central  Google Scholar 

  277. Padron E, Dezern A, Andrade-Campos M, Vaddi K, Scherle P, Zhang Q, et al. A multi-institution phase I trial of ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin Cancer Res. 2016;22(15):3746–54.

    PubMed  PubMed Central  Google Scholar 

  278. Assi R, Kantarjian HM, Garcia-Manero G, Cortes JE, Pemmaraju N, Wang X, et al. A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. Am J Hematol. 2018;93(2):277–85.

    PubMed  Google Scholar 

  279. Dao KT, Gotlib J, Deininger MMN, Oh ST, Cortes JE, Collins RH Jr, et al. Efficacy of ruxolitinib in patients with chronic neutrophilic leukemia and atypical chronic myeloid leukemia. J Clin Oncol. 2020;38(10):1006–18.

    PubMed  Google Scholar 

  280. Jaiswal S, Jamieson CHM, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271–85.

    PubMed  PubMed Central  Google Scholar 

  281. Jiang H, Fu R, Wang H, Li L, Liu H, Shao Z. CD47 is expressed abnormally on hematopoietic cells in myelodysplastic syndrome. Leuk Res. 2013;37(8):907–10.

    PubMed  Google Scholar 

  282. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001;11(3):130–5.

    PubMed  Google Scholar 

  283. Lian S, Xie X, Lu Y, Jia L. Checkpoint CD47 function on tumor metastasis and immune therapy. Onco Targets Ther. 2019;12:9105–14.

    PubMed  PubMed Central  Google Scholar 

  284. Latour S, Tanaka H, Demeure C, Mateo V, Rubio M, Brown EJ, et al. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J Immunol. 2001;167(5):2547–54.

    PubMed  Google Scholar 

  285. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol. 2009;19(2):72–80.

    PubMed  Google Scholar 

  286. Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6(6):457–64.

    PubMed  Google Scholar 

  287. Miyashita M, Ohnishi H, Okazawa H, Tomonaga H, Hayashi A, Fujimoto T-T, et al. Promotion of neurite and filopodium formation by CD47: roles of Integrins, Rac, and Cdc42. Mol Biol Cell. 2004;15(8):3950–63.

    PubMed  PubMed Central  Google Scholar 

  288. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem. 1996;271(2):695–701.

    PubMed  Google Scholar 

  289. Shinohara M, Ohyama N, Murata Y, Okazawa H, Ohnishi H, Ishikawa O, et al. CD47 regulation of epithelial cell spreading and migration, and its signal transduction. Cancer Sci. 2006;97(9):889–95.

    PubMed  Google Scholar 

  290. Cooper D, Lindberg FP, Gamble JR, Brown EJ, Vadas MA. Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc Natl Acad Sci U S A. 1995;92(9):3978–82.

    PubMed  PubMed Central  Google Scholar 

  291. Parkos CA, Colgan SP, Liang TW, Nusrat A, Bacarra AE, Carnes DK, et al. CD47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J Cell Biol. 1996;132(3):437–50.

    PubMed  Google Scholar 

  292. Liu Y, Merlin D, Burst SL, Pochet M, Madara JL, Parkos CA. The role of CD47 in neutrophil transmigration. increased rate of migration correlates with increased cell surface expression of CD47. J Biol Chem. 2001;276(43):40156–66.

    PubMed  Google Scholar 

  293. Blazar BR, Lindberg FP, Ingulli E, Panoskaltsis-Mortari A, Oldenborg P-A, Iizuka K, et al. Cd47 (integrin-associated protein) engagement of dendritic cell and macrophage Counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J Exp Med. 2001;194(4):541–50.

    PubMed  PubMed Central  Google Scholar 

  294. Oldenborg P-A, Zheleznyak A, Fang Y-F, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051–4.

    PubMed  Google Scholar 

  295. Grimbert P, Bouguermouh S, Baba N, Nakajima T, Allakhverdi Z, Braun D, et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25- T cells in response to inflammation. J Immunol. 2006;177(6):3534–41.

    PubMed  Google Scholar 

  296. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286–99.

    PubMed  PubMed Central  Google Scholar 

  297. Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA, Greenberg PL, et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci. 2013;110(8):3011–6.

    PubMed  PubMed Central  Google Scholar 

  298. Jalil AR, Andrechak JC, Discher DE. Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPα structure–function. Antibody Therapeutics. 2020;3(2):80–94.

    PubMed  PubMed Central  Google Scholar 

  299. Sallman DA, Asch AS, Al Malki MM, Lee DJ, Donnellan WB, Marcucci G, et al. The First-in-Class Anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: ongoing phase 1b results. Blood. 2019;134(Supplement_1):569.

    Google Scholar 

  300. Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA. Targeted disruption of the β2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl Med. 2015;4(10):1234–45.

    PubMed  PubMed Central  Google Scholar 

  301. McCracken MN, Cha AC, Weissman IL. Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 “Don’t eat me” signals. Clin Cancer Res. 2015;21(16):3597–601.

    PubMed  PubMed Central  Google Scholar 

  302. Myers LM, Tal MC, Torrez Dulgeroff LB, Carmody AB, Messer RJ, Gulati G, et al. A functional subset of CD8(+) T cells during chronic exhaustion is defined by SIRPα expression. Nat Commun. 2019;10(1):794.

    PubMed  PubMed Central  Google Scholar 

  303. Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD. Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment. Cancer Immunol Res. 2019;7(9):1547–61.

    PubMed  PubMed Central  Google Scholar 

  304. Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24(2):225–32.

    PubMed  PubMed Central  Google Scholar 

  305. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111.

    PubMed  PubMed Central  Google Scholar 

  306. Su EW, Lin JY, Kane LP. TIM-1 and TIM-3 proteins in immune regulation. Cytokine. 2008;44(1):9–13.

    PubMed  PubMed Central  Google Scholar 

  307. Ngiow SF, Teng MWL, Smyth MJ. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res. 2011;71(21):6567–71.

    PubMed  Google Scholar 

  308. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.

    PubMed  PubMed Central  Google Scholar 

  309. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13(9):832–42.

    PubMed  PubMed Central  Google Scholar 

  310. Gorman JV, Starbeck-Miller G, Pham NL, Traver GL, Rothman PB, Harty JT, et al. Tim-3 directly enhances CD8 T cell responses to acute listeria monocytogenes infection. J Immunol. 2014;192(7):3133–42.

    PubMed  Google Scholar 

  311. Gleason MK, Lenvik TR, McCullar V, Felices M, O’Brien MS, Cooley SA, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood. 2012;119(13):3064–72.

    PubMed  PubMed Central  Google Scholar 

  312. Nakae S, Iikura M, Suto H, Akiba H, Umetsu DT, Dekruyff RH, et al. TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood. 2007;110(7):2565–8.

    PubMed  PubMed Central  Google Scholar 

  313. Gautron AS, Dominguez-Villar M, de Marcken M, Hafler DA. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol. 2014;44(9):2703–11.

    PubMed  PubMed Central  Google Scholar 

  314. Elahi S, Niki T, Hirashima M, Horton H. Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection. Blood. 2012;119(18):4192–204.

    PubMed  PubMed Central  Google Scholar 

  315. Sharma S, Sundararajan A, Suryawanshi A, Kumar N, Veiga-Parga T, Kuchroo VK, et al. T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza a virus-specific humoral and CD8 T-cell responses. Proc Natl Acad Sci U S A. 2011;108(47):19001–6.

    PubMed  PubMed Central  Google Scholar 

  316. Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5(1):29–41.

    PubMed  Google Scholar 

  317. Asayama T, Tamura H, Ishibashi M, Kuribayashi-Hamada Y, Onodera-Kondo A, Okuyama N, et al. Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget. 2017;8(51):88904–17.

    PubMed  PubMed Central  Google Scholar 

  318. Schürch CM. Therapeutic antibodies for myeloid neoplasms—current developments and future directions. Front Oncol. 2018;8:152.

    PubMed  PubMed Central  Google Scholar 

  319. Roecklein BA, Torok-Storb B. Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood. 1995;85(4):997–1005.

    PubMed  Google Scholar 

  320. Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M, et al. Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood. 2010;116(7):1124–31.

    PubMed  PubMed Central  Google Scholar 

  321. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108(10):3472–6.

    PubMed  Google Scholar 

  322. Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, et al. miR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood. 2013;121(15):2875–81.

    PubMed  PubMed Central  Google Scholar 

  323. Zhou L, Nguyen AN, Sohal D, Ying Ma J, Pahanish P, Gundabolu K, et al. Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood. 2008;112(8):3434–43.

    PubMed  PubMed Central  Google Scholar 

  324. Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, et al. A TIM-3/Gal-9 Autocrine stimulatory loop drives self-renewal of human myeloid Leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17(3):341–52.

    PubMed  Google Scholar 

  325. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–94.

    PubMed  PubMed Central  Google Scholar 

  326. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117(17):4501–10.

    PubMed  PubMed Central  Google Scholar 

  327. Borate U. Anti-TIM-3 antibody MBG453 in combination with hypomethylating agents (hmas) in patients (PTS) with high-risk myelodysplastic syndrome (HR-MDS) and acute myeloid leukemia (AML): a phase 1 study. 2020.

    Google Scholar 

  328. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.

    PubMed  PubMed Central  Google Scholar 

  329. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166–82.

    PubMed  Google Scholar 

  330. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.

    PubMed  Google Scholar 

  331. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.

    PubMed  Google Scholar 

  332. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–10.

    PubMed  Google Scholar 

  333. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    PubMed  PubMed Central  Google Scholar 

  334. Piccirillo CA, Shevach EM. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol. 2004;16(2):81–8.

    PubMed  Google Scholar 

  335. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10.

    PubMed  PubMed Central  Google Scholar 

  336. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.

    PubMed  Google Scholar 

  337. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.

    PubMed  PubMed Central  Google Scholar 

  338. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. J Exp Med. 2009;206(8):1717–25.

    PubMed  PubMed Central  Google Scholar 

  339. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    PubMed  Google Scholar 

  340. Poschke I, Mougiakakos D, Kiessling R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother. 2011;60(8):1161–71.

    PubMed  Google Scholar 

  341. Bennett F, Luxenberg D, Ling V, Wang IM, Marquette K, Lowe D, et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol. 2003;170(2):711–8.

    PubMed  Google Scholar 

  342. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–53.

    PubMed  PubMed Central  Google Scholar 

  343. Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012;18(24):6580–7.

    PubMed  Google Scholar 

  344. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–29.

    PubMed  PubMed Central  Google Scholar 

  345. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    PubMed  PubMed Central  Google Scholar 

  346. Saudemont A, Quesnel B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood. 2004;104(7):2124–33.

    PubMed  Google Scholar 

  347. Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013;6(1):74.

    PubMed  PubMed Central  Google Scholar 

  348. Chen X, Liu S, Wang L, Zhang W-G, Ji Y, Ma X. Clinical significance of B7-H1(PD-L1)expression in human acute leukemia. Cancer Biol Ther. 2008;7(5):622–7.

    PubMed  Google Scholar 

  349. Coats T, Ae S, Mourikis TP, Irish JM, Kordasti S, Mufti GJ. Mass cytometry reveals PD1 upregulation is an early step in MDS disease progression. Blood. 2016;128(22):4296.

    Google Scholar 

  350. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28(6):1280–8.

    PubMed  Google Scholar 

  351. Cheng P, Eksioglu EA, Chen X, Kandell W, Le Trinh T, Cen L, et al. S100A9-induced overexpression of PD-1/PD-L1 contributes to ineffective hematopoiesis in myelodysplastic syndromes. Leukemia. 2019;33(8):2034–46.

    PubMed  PubMed Central  Google Scholar 

  352. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9.

    PubMed  PubMed Central  Google Scholar 

  353. Ørskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M, et al. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget. 2015;6(11):9612–26.

    PubMed  PubMed Central  Google Scholar 

  354. Frikeche J, Clavert A, Delaunay J, Brissot E, Grégoire M, Gaugler B, et al. Impact of the hypomethylating agent 5-azacytidine on dendritic cells function. Exp Hematol. 2011;39(11):1056–63.

    PubMed  Google Scholar 

  355. Fonsatti E, Nicolay HJ, Sigalotti L, Calabrò L, Pezzani L, Colizzi F, et al. Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res. 2007;13(11):3333–8.

    PubMed  Google Scholar 

  356. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517–9.

    PubMed  Google Scholar 

  357. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    PubMed  Google Scholar 

  358. Zeidan AM, Zeidner JF, Duffield A, Knaus HA, Ferguson A, Sheldon K, et al. Stabilization of myelodysplastic syndromes (MDS) following hypomethylating agent (HMAs) failure using the immune checkpoint inhibitor Ipilimumab: a phase I trial. Blood. 2015;126(23):1666.

    Google Scholar 

  359. Poole RM. Pembrolizumab: first global approval. Drugs. 2014;74(16):1973–81.

    PubMed  Google Scholar 

  360. Garcia-Manero G, Tallman MS, Martinelli G, Ribrag V, Yang H, Balakumaran A, et al. Pembrolizumab, a PD-1 inhibitor, in patients with myelodysplastic syndrome (MDS) after failure of hypomethylating agent treatment. Blood. 2016;128(22):345.

    Google Scholar 

  361. Garcia-Manero G, Montalban-Bravo G, Sasaki K, Daver NG, Jabbour EJ, Alvarado Y, et al. Double immune checkpoint inhibitor blockade with nivolumab and ipilimumab with or without azacitidine in patients with myelodysplastic syndrome (MDS). Blood. 2018;132(Supplement 1):1831.

    Google Scholar 

  362. Ross SH, Cantrell DA. Signaling and function of Interleukin-2 in T lymphocytes. Annu Rev Immunol. 2018;36:411–33.

    PubMed  PubMed Central  Google Scholar 

  363. Smith KA, Cantrell DA. Interleukin 2 regulates its own receptors. Proc Natl Acad Sci U S A. 1985;82(3):864–8.

    PubMed  PubMed Central  Google Scholar 

  364. Cornish GH, Sinclair LV, Cantrell DA. Differential regulation of T-cell growth by IL-2 and IL-15. Blood. 2006;108(2):600–8.

    PubMed  Google Scholar 

  365. Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB, Hawkins PT, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol. 2016;17(1):104–12.

    PubMed  Google Scholar 

  366. Cantrell DA. Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 2001;114(Pt 8):1439–45.

    PubMed  Google Scholar 

  367. Brennan P, Babbage JW, Burgering BM, Groner B, Reif K, Cantrell DA. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity. 1997;7(5):679–89.

    PubMed  Google Scholar 

  368. Ward SG, Cantrell DA. Phosphoinositide 3-kinases in T lymphocyte activation. Curr Opin Immunol. 2001;13(3):332–8.

    PubMed  Google Scholar 

  369. Migone TS, Rodig S, Cacalano NA, Berg M, Schreiber RD, Leonard WJ. Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Mol Cell Biol. 1998;18(11):6416–22.

    PubMed  PubMed Central  Google Scholar 

  370. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5(11):875–85.

    PubMed  Google Scholar 

  371. Graves JD, Downward J, Izquierdo-Pastor M, Rayter S, Warne PH, Cantrell DA. The growth factor IL-2 activates p21ras proteins in normal human T lymphocytes. J Immunol. 1992;148(8):2417–22.

    PubMed  Google Scholar 

  372. Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992;358(6381):70–3.

    PubMed  Google Scholar 

  373. Johnston JA, Bacon CM, Finbloom DS, Rees RC, Kaplan D, Shibuya K, et al. Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc Natl Acad Sci U S A. 1995;92(19):8705–9.

    PubMed  PubMed Central  Google Scholar 

  374. Beadling C, Ng J, Babbage JW, Cantrell DA. Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase pathway distinct from the Raf1/ERK2 MAP kinase pathway. EMBO J. 1996;15(8):1902–13.

    PubMed  PubMed Central  Google Scholar 

  375. Giampaolo S, Wójcik G, Serfling E, Patra AK. Interleukin-2-regulatory T cell axis critically regulates maintenance of hematopoietic stem cells. Oncotarget. 2017;8(18):29625–42.

    PubMed  PubMed Central  Google Scholar 

  376. Asao H. Interleukin-2☆. In: Reference module in biomedical sciences. Elsevier; 2014.

    Google Scholar 

  377. Bensinger SJ, Walsh PT, Zhang J, Carroll M, Parsons R, Rathmell JC, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol. 2004;172(9):5287–96.

    PubMed  Google Scholar 

  378. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26(3):371–81.

    PubMed  Google Scholar 

  379. Liao W, Schones DE, Oh J, Cui Y, Cui K, Roh TY, et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol. 2008;9(11):1288–96.

    PubMed  PubMed Central  Google Scholar 

  380. Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23(5):598–604.

    PubMed  PubMed Central  Google Scholar 

  381. Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, et al. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A. 2004;101(11):3880–5.

    PubMed  PubMed Central  Google Scholar 

  382. Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12(3):247–54.

    PubMed  PubMed Central  Google Scholar 

  383. Wang Y, Zuo X. Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine: X. 2019;1(1):100005.

    PubMed  Google Scholar 

  384. Bourantas KL, Hatzimichael EC, Makis AC, Chaidos A, Kapsali ED, Tsiara S, et al. Serum beta-2-microglobulin, TNF-α and interleukins in myeloproliferative disorders. Eur J Haematol. 1999;63(1):19–25.

    PubMed  Google Scholar 

  385. Panteli KE, Hatzimichael EC, Bouranta PK, Katsaraki A, Seferiadis K, Stebbing J, et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol. 2005;130(5):709–15.

    PubMed  Google Scholar 

  386. Wang JC, Sindhu H, Chen C, Kundra A, Kafeel MI, Wong C, et al. Immune derangements in patients with Myelofibrosis: the role of Treg, Th17, and sIL2Rα. PLoS One. 2015;10(3):e0116723.

    PubMed  PubMed Central  Google Scholar 

  387. Zoumbos N, Symeonidis A, Kourakli A, Katevas P, Matsouka P, Perraki M, et al. Increased levels of soluble interleukin-2 receptors and tumor necrosis factor in serum of patients with myelodysplastic syndromes. Blood. 1991;77(2):413–4.

    PubMed  Google Scholar 

  388. Yokose N, Ogata K. Plasma soluble interleukin-2 receptors in patients with myelodysplastic syndromes. Leuk Lymphoma. 1997;28(1–2):171–6.

    PubMed  Google Scholar 

  389. Sand K, Theorell J, Bruserud Ø, Bryceson YT, Kittang AO. Reduced potency of cytotoxic T lymphocytes from patients with high-risk myelodysplastic syndromes. Cancer Immunol Immunother. 2016;65(9):1135–47.

    PubMed  Google Scholar 

  390. Zou JX, Rollison DE, Boulware D, Chen DT, Sloand EM, Pfannes LV, et al. Altered naive and memory CD4+ T-cell homeostasis and immunosenescence characterize younger patients with myelodysplastic syndrome. Leukemia. 2009;23(7):1288–96.

    PubMed  PubMed Central  Google Scholar 

  391. Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV, et al. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 2009;23(3):510–8.

    PubMed  Google Scholar 

  392. Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B, et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood. 2007;110(3):847–50.

    PubMed  Google Scholar 

  393. Kawatani T, Endo A, Tajima F, Ooi S, Kawasaki H. Clinical significance of serum soluble interleukin-2 receptor in chronic myeloproliferative disorders. Int J Hematol. 1997;65(2):123–8.

    PubMed  Google Scholar 

  394. Barabanshikova MV, Dubina IA, Lapin SV, Morozova EV, Vlasova JJ, Ivanova MO, et al. Clinical correlates and prognostic significance of IL-8, sIL-2R, and immunoglobulin-free light chain levels in patients with myelofibrosis. Oncol Res Treat. 2017;40(10):574–8.

    PubMed  Google Scholar 

  395. Pizzolo G, Trentin L, Vinante F, Agostini C, Zambello R, Masciarelli M, et al. Natural killer cell function and lymphoid subpopulations in acute non-lymphoblastic leukaemia in complete remission. Br J Cancer. 1988;58(3):368–72.

    PubMed  PubMed Central  Google Scholar 

  396. Whiteside TL. Signaling defects in T lymphocytes of patients with malignancy. Cancer Immunol Immunother. 1999;48(7):346–52.

    PubMed  Google Scholar 

  397. Kiessling R, Wasserman K, Horiguchi S, Kono K, Sjöberg J, Pisa P, et al. Tumor-induced immune dysfunction. Cancer Immunol Immunother. 1999;48(7):353–62.

    PubMed  Google Scholar 

  398. Rodríguez PC, Ochoa AC. T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol. 2006;16(1):66–72.

    PubMed  Google Scholar 

  399. Hellstrand K, Brune M, Dahlgren C, Hansson M, Hermodsson S, Lindnér P, et al. Alleviating oxidative stress in cancer immunotherapy: a role for histamine? Med Oncol. 2000;17(4):258–69.

    PubMed  Google Scholar 

  400. Lotzová E, Savary CA, Herberman RB. Induction of NK cell activity against fresh human leukemia in culture with interleukin 2. J Immunol. 1987;138(8):2718–27.

    PubMed  Google Scholar 

  401. Brune M, Hansson M, Mellqvist UH, Hermodsson S, Hellstrand K. NK cell-mediated killing of AML blasts: role of histamine, monocytes and reactive oxygen metabolites. Eur J Haematol. 1996;57(4):312–9.

    PubMed  Google Scholar 

  402. Brune M, Hellstrand K. Remission maintenance therapy with histamine and interleukin-2 in acute myelogenous leukaemia. Br J Haematol. 1996;92(3):620–6.

    PubMed  Google Scholar 

  403. Blaise D, Attal M, Pico JL, Reiffers J, Stoppa AM, Bellanger C, et al. The use of a sequential high dose recombinant interleukin 2 regimen after autologous bone marrow transplantation does not improve the disease free survival of patients with acute leukemia transplanted in first complete remission. Leuk Lymphoma. 1997;25(5–6):469–78.

    PubMed  Google Scholar 

  404. Kolitz J, Hars V, DeAngelo D, Allen S, Shea T, Vij R, et al. Phase III trial of immunotherapy with recombinant interleukin-2 (rIL-2) versus observation in patients <60 years with acute myeloid leukemia (AML) in first remission (CR1): Preliminary results from cancer and leukemia group B (CALGB) 198082007. 53A-4A p. Cancer. 2014;120(7):1010–7. https://doi.org/10.1002/cncr.28516.

    Article  PubMed  Google Scholar 

  405. Blaise D, Attal M, Reiffers J, Michallet M, Bellanger C, Pico JL, et al. Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur Cytokine Netw. 2000;11(1):91–8.

    PubMed  Google Scholar 

  406. Baer MR, George SL, Caligiuri MA, Sanford BL, Bothun SM, Mrózek K, et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: cancer and leukemia group B study 9720. J Clin Oncol. 2008;26(30):4934–9.

    PubMed  PubMed Central  Google Scholar 

  407. Lange BJ, Smith FO, Feusner J, Barnard DR, Dinndorf P, Feig S, et al. Outcomes in CCG-2961, a children’s oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children’s oncology group. Blood. 2008;111(3):1044–53.

    PubMed  PubMed Central  Google Scholar 

  408. Romero AI, Thorén FB, Aurelius J, Askarieh G, Brune M, Hellstrand K. Post-consolidation immunotherapy with histamine Dihydrochloride and Interleukin-2 in AML. Scand J Immunol. 2009;70(3):194–205.

    PubMed  Google Scholar 

  409. Hansson M, Hermodsson S, Brune M, Mellqvist UH, Naredi P, Betten A, et al. Histamine protects T cells and natural killer cells against oxidative stress. J Interf Cytokine Res. 1999;19(10):1135–44.

    Google Scholar 

  410. Hellstrand K, Asea A, Dahlgren C, Hermodsson S. Histaminergic regulation of NK cells. Role of monocyte-derived reactive oxygen metabolites. J Immunol. 1994;153(11):4940–7.

    PubMed  Google Scholar 

  411. Hellstrand K, Hermodsson S. Histamine H2-receptor-mediated regulation of human natural killer cell activity. J Immunol. 1986;137(2):656–60.

    PubMed  Google Scholar 

  412. Hellstrand K, Asea A, Hermodsson S. Role of histamine in natural killer cell-mediated resistance against tumor cells. J Immunol. 1990;145(12):4365–70.

    PubMed  Google Scholar 

  413. Hellstrand K, Hermodsson S. Synergistic activation of human natural killer cell cytotoxicity by histamine and interleukin-2. Int Arch Allergy Appl Immunol. 1990;92(4):379–89.

    PubMed  Google Scholar 

  414. Mellqvist UH, Hansson M, Brune M, Dahlgren C, Hermodsson S, Hellstrand K. Natural killer cell dysfunction and apoptosis induced by chronic myelogenous leukemia cells: role of reactive oxygen species and regulation by histamine. Blood. 2000;96(5):1961–8.

    PubMed  Google Scholar 

  415. Hellstrand K. Histamine in cancer immunotherapy: a preclinical background. Semin Oncol. 2002;29(3 Suppl 7):35–40.

    PubMed  Google Scholar 

  416. Ihle JN, Keller J, Oroszlan S, Henderson LE, Copeland TD, Fitch F, et al. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol. 1983;131(1):282–7.

    PubMed  Google Scholar 

  417. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989;339(6219):27–30.

    PubMed  Google Scholar 

  418. Nicola N, Robb L, Metcalf D, Cary D, Drinkwater C, Begley C. Functional inactivation in mice of the gene for the interleukin-3 (IL- 3)-specific receptor beta-chain: implications for IL-3 function and the mechanism of receptor transmodulation in hematopoietic cells. Blood. 1996;87(7):2665–74.

    PubMed  Google Scholar 

  419. Reddy EP, Korapati A, Chaturvedi P, Rane S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene. 2000;19(21):2532–47.

    PubMed  Google Scholar 

  420. Kohlhuber F, Rogers NC, Watling D, Feng J, Guschin D, Briscoe J, et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol. 1997;17(2):695–706.

    PubMed  PubMed Central  Google Scholar 

  421. Sato N, Sakamaki K, Terada N, Arai K, Miyajima A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 1993;12(11):4181–9.

    PubMed  PubMed Central  Google Scholar 

  422. Woodcock JM, Bagley CJ, Lopez AF. 5 receptors of the cytokine superfamily: mechanisms of activation and involvement in disease. Baillieres Clin Haematol. 1997;10(3):507–24.

    PubMed  Google Scholar 

  423. Sagaster V, Ohler L, Berer A, Kabrna E, Ofner P, Lechner K, et al. High spontaneous colony growth in chronic myelomonocytic leukemia correlates with increased disease activity and is a novel prognostic factor for predicting short survival. Ann Hematol. 2004;83(1):9–13.

    PubMed  Google Scholar 

  424. Geissler K, Jäger E, Barna A, Gurbisz M, Graf T, Graf E, et al. Molecular basis and clinical application of growth-factor-independent in vitro myeloid Colony formation in chronic myelomonocytic leukemia. Int J Mol Sci. 2020;21(17):6057.

    PubMed  PubMed Central  Google Scholar 

  425. Zhang Y, He L, Selimoglu-Buet D, Jego C, Morabito M, Willekens C, et al. Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv. 2017;1(14):972–9.

    PubMed  PubMed Central  Google Scholar 

  426. Beke A, Laplane L, Riviere J, Yang Q, Torres-Martin M, Dayris T, et al. Multilayer intraclonal heterogeneity in chronic myelomonocytic leukemia. Haematologica. 2020;105(1):112–23.

    PubMed  PubMed Central  Google Scholar 

  427. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121(12):2186–98.

    PubMed  Google Scholar 

  428. Zhang J, Ranheim EA, Du J, Liu Y, Wang J, Kong G, et al. Deficiency of β common receptor moderately attenuates the progression of myeloproliferative neoplasm in NrasG12D/+ mice. J Biol Chem. 2015;290(31):19093–103.

    PubMed  PubMed Central  Google Scholar 

  429. Hall PD, Willingham MC, Kreitman RJ, Frankel AE. DT388-GM-CSF, a novel fusion toxin consisting of a truncated diphtheria toxin fused to human granulocyte-macrophage colony-stimulating factor, prolongs host survival in a SCID mouse model of acute myeloid leukemia. Leukemia. 1999;13(4):629–33.

    PubMed  Google Scholar 

  430. Black JH, McCubrey JA, Willingham MC, Ramage J, Hogge DE, Frankel AE. Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia. 2003;17(1):155–9.

    PubMed  Google Scholar 

  431. Patnaik MM, Ali H, Gupta V, Schiller GJ, Lee S, Yacoub A, et al. Results from ongoing phase 1/2 clinical trial of tagraxofusp (SL-401) in patients with relapsed/refractory chronic myelomonocytic leukemia (CMML). Blood. 2018;132(Supplement 1):1821.

    Google Scholar 

  432. Khan AM. Why are myelodysplastic syndromes unrecognized and underdiagnosed? A primary care perspective. Am J Med. 2012;125(7 Suppl):S15–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gill, H., Lee, E., Mo, P. (2023). In the Pipeline: Emerging Therapy for MDS and MDS/MPN. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics