Skip to main content

Novel Strategies to Manage Cytopenia in Low-Risk MDS

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia
  • 440 Accesses

Abstract

Lower-risk myelodysplastic syndromes (LR MDS) constitute the majority of cases and their clinical manifestation is determined by cytopenias. Improvements in diagnosis and prognostic stratification have been obtained with the application of NGS and advanced flow cytometry. Due to this enhanced characterization, LR MDS may be treated more efficiently with several treatment options currently available. Anemia is indeed the most frequent cytopenia, present in >90% of cases, and there are effective therapies to alleviate it. Erythropoiesis-stimulating agents (ESAs) are known to be active in the majority of cases, but at present, new experimental agents are under evaluation for patients who relapse after ESAs or are refractory to them. Empirically, agents with different mode of action are investigated, like imetelstat and roxadustat. Luspatercept, a TGF-beta pathway inhibitor restoring transfusion independence in nearly half of MDS with ring sideroblasts, has been recently approved. Lenalidomide is the treatment of choice in MDS del5q; in this therapeutic setting, determination of mutant TP53 and its allele burden is crucial. Although chronic transfusions may still be a treatment of LR MDS, optimization of iron chelation therapy has been demonstrated to decrease organ damage and prolong survival.

Thrombocytopenia, although present in around 30% of LR MDS, impacts on overall survival, but there is no standard treatment for it. Thrombomimetic agents are active in decreasing bleeding episodes and increasing platelet number, but have not been approved, most probably because of some concerns linked to their stimulating activity on early hematopoietic progenitors.

Finally, isolated neutropenia is rare in LR MDS. There is no evidence in favor of the use of myeloid-stimulating factors in preventive therapy. Some LR MDS present anemia associated with thrombocytopenia or neutropenia. In these cases, the use of hypomethylating agents, especially the oral formulations, may be considered, with the caveat of inevitable myelosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberg PL, Tuechler H, Schanz J, et al. Revised International Prognostic Scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.

    PubMed  PubMed Central  Google Scholar 

  2. Itzykson R, Crouch S, Travaglino E, et al. Early platelet count kinetics has prognostic value in lower-risk myelodysplastic syndromes. Blood Adv. 2018;2(16):2079–89.

    PubMed  PubMed Central  Google Scholar 

  3. De Witte T, Malcovati L, Fenaux P, et al. Novel dynamic outcome indicators and clinical endpoints in myelodysplastic syndrome; the European Leukemia Net MDS Registry and MDS-RIGHT project perspective. Haematologica. 2020;105(11):2516–23.

    PubMed  PubMed Central  Google Scholar 

  4. Strapatsas J, Barbulescu EC, Lauseker M, et al. Influence of platelet count at diagnosis and during the course of disease on prognosis in MDS patients. Ann Hematol. 2021;100(10):2575–84.

    PubMed  PubMed Central  Google Scholar 

  5. Garcia-Manero G, Shan J, Faderl S, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22(3):538–43.

    PubMed  Google Scholar 

  6. Oliva EN, Platzbecker U, Fenaux P, et al. Targeting health-related quality of life in patients with myelodysplastic syndromes - Current knowledge and lessons to be learned. Blood Rev. 2021;50:100851.

    PubMed  Google Scholar 

  7. Oliva EN, Dimitrov BD, Benedetto F, et al. Hemoglobin level threshold for cardiac remodeling and quality of life in myelodysplastic syndrome. Leuk Res. 2005;29(10):1217–9.

    PubMed  Google Scholar 

  8. Abel GA, Klepin HD, Magnavita ES, et al. Peri-transfusion quality-of-life assessment for patients with myelodysplastic syndromes. Transfusion. 2021;61(10):2830–6. Online ahead of print

    PubMed  Google Scholar 

  9. Santini V, Fenaux P. Treatment of myelodysplastic syndrome with thrombomimetic drugs. Semin Hematol. 2015;52(1):38–45.

    PubMed  Google Scholar 

  10. Wood EM, McQuilten ZK. Outpatient transfusions for myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program. 2020;1:167–74.

    Google Scholar 

  11. Cheok KPL, Chhetri R, Wee LYA, et al. The burden of Immune-mediated refractoriness to platelet transfusions in myelodysplastic syndromes. Transfusion. 2020;60(10):2192–8.

    PubMed  Google Scholar 

  12. Oliva EN, Alati C, Santini V, et al. Eltrombopag versus placebo for low-risk myelodysplastic syndromes with thrombocytopenia (EQoL-MDS): phase 1 results of a single-blind, randomised, controlled, phase 2 superiority trial. Lancet Haematol. 2017;4(3):e127–36.

    PubMed  Google Scholar 

  13. Vicente A, Patel BA, Gutierrez-Rodrigues F, et al. Eltrombopag monotherapy can improve hematopoiesis in patients with low to intermediate risk-1 myelodysplastic syndrome. Haematologica. 2020;105(12):2785–94.

    PubMed  PubMed Central  Google Scholar 

  14. Comont T, Meunier M, Cherait A, et al. Eltrombopag for myelodysplastic syndromes or chronic myelomonocytic leukaemia with no excess blasts and thrombocytopenia: a French multicentre retrospective real-life study. Br J Haematol. 2021;194(2):336–43.

    PubMed  Google Scholar 

  15. Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108(2):419–25.

    PubMed  Google Scholar 

  16. Kantarjian H, Fenaux P, Sekeres MA, et al. Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol. 2010;28(3):437–44.

    PubMed  Google Scholar 

  17. Sekeres MA, Kantarjian H, Fenaux P, et al. Subcutaneous or intravenous administration of romiplostim in thrombocytopenic patients with lower risk myelodysplastic syndromes. Cancer. 2011;117(5):992–1000.

    PubMed  Google Scholar 

  18. Kantarjian HM, Giles FJ, Greenberg PL, et al. Phase 2 study of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving azacitidine therapy. Blood. 2010;116(17):3163–70.

    PubMed  PubMed Central  Google Scholar 

  19. Giagounidis A, Mufti GJ, Fenaux P, et al. Results of a randomized, double-blind study of romiplostim versus placebo in patients with low/intermediate-1-risk myelodysplastic syndrome and thrombocytopenia. Cancer. 2014;120(12):1838–46.

    PubMed  Google Scholar 

  20. Kantarjian HM, Fenaux P, Sekeres MA, et al. Long-term follow-up for up to 5 years on the risk of leukaemic progression in thrombocytopenic patients with lower-risk myelodysplastic syndromes treated with romiplostim or placebo in a randomised double-blind trial. Lancet Haematol. 2018;5(3):e117–26.

    PubMed  Google Scholar 

  21. Meng F, Chen X, Yu S, et al. Safety and efficacy of eltrombopag and romiplostim in myelodysplastic syndromes: a systematic review and meta-analysis. Front Oncol. 2020;10:582686.

    PubMed  PubMed Central  Google Scholar 

  22. Garcia-Manero G, Santini V, Almeida A, et al. Phase III, randomized, placebo-controlled trial of CC-486 (oral azacitidine) in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2021;39(13):1426–36.

    PubMed  PubMed Central  Google Scholar 

  23. Fozza C, La Nasa G, Caocci G. The Yin and Yang of myelodysplastic syndromes and autoimmunity: The paradox of autoimmune disorders responding to therapies specific for MDS. Crit Rev Oncol Hematol. 2019;142:51–7.

    PubMed  Google Scholar 

  24. Jachiet V, Moulis G, Hadjadj J, et al. Clinical spectrum, outcome and management of immune thrombocytopenia associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Haematologica. 2021;106(5):1414–22.

    PubMed  PubMed Central  Google Scholar 

  25. Angelucci E, Li J, Greenberg P, Wu D, et al. TELESTO study investigators iron chelation in transfusion-dependent patients with low- to intermediate-1-risk myelodysplastic syndromes: a randomized trial. Ann Intern Med. 2020;172(8):513–22.

    PubMed  Google Scholar 

  26. Fenaux P, Santini V, Spiriti MAA, et al. A phase 3 randomized, placebo-controlled study assessing the efficacy and safety of epoetin-α in anemic patients with low-risk MDS. Leukemia. 2018;32(12):2648–58.

    PubMed  PubMed Central  Google Scholar 

  27. Balleari E, Filiberti RA, Salvetti C, et al. Effects of different doses of erythropoietin in patients with myelodysplastic syndromes: a propensity score-matched analysis. Cancer Med. 2019;8(18):7567–76.

    PubMed  PubMed Central  Google Scholar 

  28. Santini V, Schemenau J, Levis A. Can the revised IPSS predict response to erythropoietic-stimulating agents in patients with classical IPSS low or intermediate-1 MDS? Blood. 2013;122(13):2286–8.

    PubMed  Google Scholar 

  29. Kosmider O, Passet M, Santini V, et al. Are somatic mutations predictive of response to erythropoiesis stimulating agents in lower risk myelodysplastic syndromes? Haematologica. 2016;101(7):e280–3.

    PubMed  PubMed Central  Google Scholar 

  30. Messa E, Gioia D, Masiera E, et al. Effects of erythropoiesis-stimulating agents on overall survival of International Prognostic Scoring System Low/Intermediate-1 risk, transfusion-independent myelodysplastic syndrome patients: a cohort study. Haematologica. 2019;104(1):e4–8.

    PubMed  PubMed Central  Google Scholar 

  31. Johnson & Johnson EPREX® (Epoetin Alfa) Marketing Authorisation Extended to Include Treatment of Symptomatic Anaemia in Patients With Low or intermediate-1-risk Myelodysplastic Syndromes, Available from: https://www.jnj.com/media-center/press-releases/eprex-epoetin-alfa-marketing-authorisation-extended-to-include-treatment-of-symptomatic-anaemia-in-patients-with-low-or-intermediate-1-risk-myelodysplastic-syndromes.

  32. Park S, Hamel JF, Toma A, et al. Outcome of lower-risk patients with myelodysplastic syndromes without 5q deletion after failure of erythropoiesis-stimulating agents. J Clin Oncol. 2017;35(14):1591–7.

    PubMed  Google Scholar 

  33. Park S, Hamel JF, Toma A, et al. Outcome of lower-risk myelodysplastic syndrome with ring sideroblasts (MDS-RS) after failure of erythropoiesis- stimulating agents. Leuk Res. 2020;99:106472.

    PubMed  Google Scholar 

  34. Santini V, Valcárcel D, Platzbecker U, et al. Phase II study of the ALK5 inhibitor galunisertib in very low-, low-, and intermediate-risk myelodysplastic syndromes. Clin Cancer Res. 2019;25(23):6976–85.

    PubMed  Google Scholar 

  35. Platzbecker U, Germing U, Götze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47.

    PubMed  Google Scholar 

  36. Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382(2):140–51.

    PubMed  Google Scholar 

  37. Steensma DP, Fenaux P, Van Eygen K, et al. Imetelstat achieves meaningful and durable transfusion independence in high transfusion-burden patients with lower-risk myelodysplastic syndromes in a phase II study. J Clin Oncol. 2021;39(1):48–56.

    PubMed  Google Scholar 

  38. Henry DH, Glaspy J, Harrup RA, et al. Roxadustat (FG4592; ASP1517;AZD9941) in the treatment of anemia in patients with lower risk myelodysplastic syndrome (LR-MDS) and low red blood cell (RBC) transfusion burden (LTB). Blood. 2019;134(suppl 1):843.

    Google Scholar 

  39. Steensma DP, Wermke M, Klimek VM, et al. Phase I first-in-human dose escalation study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia. 2021; https://doi.org/10.1038/s41375-021-01328-9.

  40. List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456–65.

    PubMed  Google Scholar 

  41. Sekeres MA, Swern AS, Giagounidis A, et al. The impact of lenalidomide exposure on response. Blood Cancer J. 2018;8(10):90.

    PubMed  PubMed Central  Google Scholar 

  42. Sievers QL, Gasser JA, Cowley GS, et al. Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4 CRBN activity. Blood. 2018;132(12):1293.

    PubMed  PubMed Central  Google Scholar 

  43. Mallo M, Del Rey M, Ibáñez M, et al. Response to lenalidomide in myelodysplastic syndromes with del(5q): influence of cytogenetics and mutations. Br J Haematol. 2013;162(1):74–86.

    PubMed  Google Scholar 

  44. Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26(10):1549–56.

    PubMed  PubMed Central  Google Scholar 

  45. Santini V, Almeida A, Giagounidis A, et al. Randomized Phase III study of lenalidomide versus placebo in RBC Transfusion-dependent patients with lower-risk non-del(5q) myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents. J Clin Oncol. 2016;34(25):2988–96.

    PubMed  Google Scholar 

  46. Santini V, Fenaux P, Giagounidis A, et al. Impact of somatic mutations on response to lenalidomide in lower-risk non-del(5q) myelodysplastic syndromes patients. Leukemia. 2021;35(3):897–900.

    PubMed  Google Scholar 

  47. Santini V, Almeida A, Giagounidis A, et al. The effect of lenalidomide on health-related quality of life in patients with lower-risk non-del(5q) myelodysplastic syndromes: results from the MDS-005 study. Clin Lymphoma Myeloma Leuk. 2018;18(2):136–144.e7.

    PubMed  Google Scholar 

  48. Gyan E, Andrieu V, Sanna A, et al. Myelodysplastic syndromes with single neutropenia or thrombocytopenia are rarely refractory cytopenias with unilineage dysplasia by World Health Organization 2008 criteria and have favorable prognosis. Br J Haematol. 2016;175(5):975–9.

    PubMed  Google Scholar 

  49. Carraway HE, Saygin C. Therapy for lower-risk MDS. Hematology Am Soc Hematol Educ Program. 2020;1:426–33.

    Google Scholar 

  50. Noy-Lotan S, Krasnov T, Dgany O, et al. Incorporation of somatic panels for the detection of haematopoietic transformation in children and young adults with leukaemia predisposition syndromes and with acquired cytopenias. Br J Haematol. 2021;193(3):570–80.

    PubMed  Google Scholar 

  51. Hutzschenreuter F, Monsef I, Kreuzer KA, et al. Granulocyte and granulocyte-macrophage colony stimulating factors for newly diagnosed patients with myelodysplastic syndromes. Cochrane Database Syst Rev. 2016;2:CD009310.

    PubMed  Google Scholar 

  52. Musto P, Maurillo L, Spagnoli A, et al. Azacitidine for the treatment of lower risk myelodysplastic syndromes: a retrospective study of 74 patients enrolled in an Italian named patient program. Cancer. 2010;116(6):1485–94.

    PubMed  Google Scholar 

  53. Thepot S, Ben Abdelali R, Chevret S, et al. A randomized phase II trial of azacitidine +/− epoetin-β in lower-risk myelodysplastic syndromes resistant to erythropoietic stimulating agents. Haematologica. 2016;101(8):918–25.

    PubMed  PubMed Central  Google Scholar 

  54. Garcia-Manero G, Griffiths EA, Steensma DP, et al. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood. 2020;136(6):674–83.

    PubMed  PubMed Central  Google Scholar 

  55. Jabbour E, Short NJ, Montalban-Bravo G, et al. Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN. Blood. 2017;130(13):1514–22.

    PubMed  PubMed Central  Google Scholar 

  56. Stahl M, DeVeaux M, de Witte T, et al. The use of immunosuppressive therapy in MDS: clinical outcomes and their predictors in a large international patient cohort. Blood Adv. 2018;2(14):1765–72.

    PubMed  PubMed Central  Google Scholar 

  57. Stahl M, Bewersdorf JP, Giri S, et al. Use of immunosuppressive therapy for management of myelodysplastic syndromes: a systematic review and meta-analysis. Haematologica. 2020;105(1):102–11.

    PubMed  PubMed Central  Google Scholar 

  58. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753–62.

    PubMed  PubMed Central  Google Scholar 

  59. Della Porta MG, Jackson CH, Alessandrino EP, et al. Decision analysis of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome stratified according to the revised International Prognostic Scoring System. Leukemia. 2017;31(11):2449–57.

    PubMed  PubMed Central  Google Scholar 

  60. Della Porta MG, Gallì A, Bacigalupo A, et al. Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2016;34(30):3627–37.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Santini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santini, V. (2023). Novel Strategies to Manage Cytopenia in Low-Risk MDS. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics