Skip to main content

Treatment Algorithm of CMML and Other Adult MDS/MPN Subtypes

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia

Abstract

Myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes are now recognized as distinct entities in recent World Health Organization classifications. Aside from juvenile myelomonocytic leukemia, MDS/MPNs including chronic myelomonocytic leukemias and rare subtypes such as atypical chronic myeloid leukemia or MDS/MPN with ring sideroblasts and thrombocytosis occur in older adults. Each entity harbors a distinct clinical presentation and molecular profile, but their prognosis remains overall poor. Different risk-scoring systems have been established which are yet to be integrated with therapeutic algorithms. The only curative therapy remains allogeneic hematopoietic stem cell transplantation (HSCT), but few patients are eligible due to their age and comorbidities. Because of their low incidence, few clinical trials have been conducted in MDS/MPNs, and aside from azacitidine in a subset of CMMLs, no drug is labeled for these entities. Therapeutic decisions in MDS/MPNs thus often rely on small retrospective series or case reports and aim to alleviate symptoms, with limited hope to alter the disease’s natural history. Thus, MDS/MPNs remain an unmet medical need. In this chapter, we review the epidemiology, diagnostic, and prognostic criteria of each MDS/MPN entity and propose therapeutic algorithms to guide the management of these rare but high-risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  PubMed  Google Scholar 

  2. Hunter AM, Padron E. Molecular genetics of MDS/MPN overlap syndromes. Best Pract Res Clin Haematol. 2020;33:101195. https://doi.org/10.1016/j.beha.2020.101195.

    Article  PubMed  Google Scholar 

  3. Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116:3724–34. https://doi.org/10.1182/blood-2010-05-282632.

    Article  PubMed  Google Scholar 

  4. Murthy GSG, Dhakal I, Mehta P. Incidence and survival outcomes of chronic myelomonocytic leukemia in the United States. Leuk Lymphoma. 2017;58:1648–54. https://doi.org/10.1080/10428194.2016.1258700.

    Article  Google Scholar 

  5. Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206–12. https://doi.org/10.1038/leu.2014.125.

    Article  PubMed  Google Scholar 

  6. Solary E, Itzykson R. How I treat chronic myelomonocytic leukemia. Blood. 2017;130:126–36. https://doi.org/10.1182/blood-2017-04-736421.

    Article  PubMed  Google Scholar 

  7. Takahashi K, Yabe M, Shapira I, Pierce S, Garcia-Manero G, Varma M. Clinical and cytogenetic characteristics of myelodysplastic syndrome in patients with HIV infection. Leuk Res. 2012;36:1376–9. https://doi.org/10.1016/j.leukres.2012.08.003.

    Article  PubMed  Google Scholar 

  8. Zhao L-P, Boy M, Azoulay C, Clappier E, Sébert M, Amable L, et al. Genomic landscape of MDS/CMML associated with systemic inflammatory and autoimmune disease. Leukemia. 2021; https://doi.org/10.1038/s41375-021-01152-1.

  9. Carr RM, Patnaik MM. Genetic and epigenetic factors interacting with clonal hematopoiesis resulting in chronic myelomonocytic leukemia. Curr Opin Hematol. 2020;27:2–10. https://doi.org/10.1097/MOH.0000000000000553.

    Article  PubMed  Google Scholar 

  10. Padron E, Yoder S, Kunigal S, Mesa T, Teer JK, Al Ali N, et al. ETV6 and signaling gene mutations are associated with secondary transformation of myelodysplastic syndromes to chronic myelomonocytic leukemia. Blood. 2014;123:3675–7. https://doi.org/10.1182/blood-2014-03-562637.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cook EK, Luo M, Rauh MJ. Clonal hematopoiesis and inflammation: Partners in leukemogenesis and comorbidity. Exp Hematol. 2020;83:85–94. https://doi.org/10.1016/j.exphem.2020.01.011.

    Article  PubMed  Google Scholar 

  12. Franzini A, Pomicter AD, Yan D, Khorashad JS, Tantravahi SK, Than H, et al. The transcriptome of CMML monocytes is highly inflammatory and reflects leukemia-specific and age-related alterations. Blood Adv. 2019;3:2949–61. https://doi.org/10.1182/bloodadvances.2019000585.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen C, Huang X-L, Gao D-Q, Li Y-W, Qian S-X. Chronic myelomonocytic leukemia-associated pulmonary alveolar proteinosis: a case report and review of literature. World J Clin Cases. 2021;9:1156–67. https://doi.org/10.12998/wjcc.v9.i5.1156.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Belliere J, Colombat M, Kounde C, Recher C, Ribes D, Huart A, et al. Kidney involvement in patients with chronic myelomonocytic leukemia or BCR-ABL-negative myeloproliferative neoplasms. Kidney Int Rep. 2021;6:737–45. https://doi.org/10.1016/j.ekir.2020.12.005.

    Article  PubMed  Google Scholar 

  15. Mathew RA, Bennett JM, Liu JJ, Komrokji RS, Lancet JE, Naghashpour M, et al. Cutaneous manifestations in CMML: indication of disease acceleration or transformation to AML and review of the literature. Leuk Res. 2012;36:72–80. https://doi.org/10.1016/j.leukres.2011.05.003.

    Article  PubMed  Google Scholar 

  16. Patel AB, Miles RR, Deininger MW. Lysozyme nephropathy in chronic myelomonocytic leukemia. Clin Case Rep. 2019;7:1263–4. https://doi.org/10.1002/ccr3.2188.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hannon M, Wilde L, Nwaoduah N, Kasner M. Chronic myelomonocytic leukemia with central nervous system involvement. Leuk Lymphoma. 2018;59:2267–8. https://doi.org/10.1080/10428194.2017.1422866.

    Article  PubMed  Google Scholar 

  18. Patel AB, Pettijohn EM, Abedin SM, Raps E, Deininger MW. Leukemoid reaction in chronic myelomonocytic leukemia patients undergoing surgery: perioperative management recommendations. Blood Adv. 2019;3:952–5. https://doi.org/10.1182/bloodadvances.2019032300.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Widmer LW, Ardüser D, Kraus R, Gebbers J-O, Villiger P. Peliosis lienalis with atraumatic splenic rupture in a patient with chronic myelomonocytic leukemia: a case report. Int J Surg Case Rep. 2021;80:105641. https://doi.org/10.1016/j.ijscr.2021.02.027.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grignano E, Mekinian A, Braun T, Liozon E, Hamidou M, Decaux O, et al. Autoimmune and inflammatory diseases associated with chronic myelomonocytic leukemia: a series of 26 cases and literature review. Leuk Res. 2016;47:136–41. https://doi.org/10.1016/j.leukres.2016.05.013.

    Article  PubMed  Google Scholar 

  21. Jachiet V, Moulis G, Hadjadj J, Seguier J, Laribi K, Schleinitz N, et al. Clinical spectrum, outcome and management of immune thrombocytopenia associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Haematologica. 2021;106:1414–22. https://doi.org/10.3324/haematol.2020.272559.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36. https://doi.org/10.1200/JCO.2012.47.3314.

    Article  PubMed  Google Scholar 

  23. Schillinger F, Sourdeau E, Boubaya M, Baseggio L, Clauser S, Cornet E, et al. A new approach for diagnosing chronic myelomonocytic leukemia using structural parameters of Sysmex XNTM analyzers in routine laboratory practice. Scand J Clin Lab Invest. 2018;78:159–64. https://doi.org/10.1080/00365513.2018.1423702.

    Article  PubMed  Google Scholar 

  24. Foucar K, Hsi ED, Wang SA, Rogers HJ, Hasserjian RP, Bagg A, et al. Concordance among hematopathologists in classifying blasts plus promonocytes: a bone marrow pathology group study. Int J Lab Hematol. 2020;42:418–22. https://doi.org/10.1111/ijlh.13212.

    Article  PubMed  Google Scholar 

  25. Meggendorfer M, Jeromin S, Haferlach C, Kern W, Haferlach T. The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2018;103:e192–5. https://doi.org/10.3324/haematol.2017.183160.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goasguen JE, Bennett JM, Bain BJ, Vallespi T, Brunning R, Mufti GJ, et al. Morphological evaluation of monocytes and their precursors. Haematologica. 2009;94:994–7. https://doi.org/10.3324/haematol.2008.005421.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121:2186–98. https://doi.org/10.1182/blood-2012-06-440347.

    Article  PubMed  Google Scholar 

  28. Schuler E, Frank F, Hildebrandt B, Betz B, Strupp C, Rudelius M, et al. Myelodysplastic syndromes without peripheral monocytosis but with evidence of marrow monocytosis share clinical and molecular characteristics with CMML. Leuk Res. 2018;65:1–4. https://doi.org/10.1016/j.leukres.2017.12.002.

    Article  PubMed  Google Scholar 

  29. Loghavi S, Sui D, Wei P, Garcia-Manero G, Pierce S, Routbort MJ, et al. Validation of the 2017 revision of the WHO chronic myelomonocytic leukemia categories. Blood Adv. 2018;2:1807–16. https://doi.org/10.1182/bloodadvances.2018019224.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Such E, Cervera J, Costa D, Solé F, Vallespí T, Luño E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96:375–83. https://doi.org/10.3324/haematol.2010.030957.

    Article  PubMed  Google Scholar 

  31. Schuler E, Schroeder M, Neukirchen J, Strupp C, Xicoy B, Kündgen A, et al. Refined medullary blast and white blood cell count based classification of chronic myelomonocytic leukemias. Leuk Res. 2014;38:1413–9. https://doi.org/10.1016/j.leukres.2014.09.003.

    Article  PubMed  Google Scholar 

  32. Wassie EA, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89:1111–5. https://doi.org/10.1002/ajh.23846.

    Article  PubMed  Google Scholar 

  33. Padron E, Garcia-Manero G, Patnaik MM, Itzykson R, Lasho T, Nazha A, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;5:e333. https://doi.org/10.1038/bcj.2015.53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elena C, Gallì A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128:1408–17. https://doi.org/10.1182/blood-2016-05-714030.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Della Porta MG, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15. https://doi.org/10.1182/blood-2012-08-452938.

    Article  PubMed  Google Scholar 

  36. Patnaik MM, Padron E, LaBorde RR, Lasho TL, Finke CM, Hanson CA, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27:1504–10. https://doi.org/10.1038/leu.2013.88.

    Article  PubMed  Google Scholar 

  37. Robin M, Itzykson R. Contemporary treatment approaches to CMML - Is allogeneic HCT the only cure? Best Pract Res Clin Haematol. 2020;33:101138. https://doi.org/10.1016/j.beha.2019.101138.

    Article  PubMed  Google Scholar 

  38. Kerbauy DMB, Chyou F, Gooley T, Sorror ML, Scott B, Pagel JM, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2005;11:713–20. https://doi.org/10.1016/j.bbmt.2005.05.008.

    Article  PubMed  Google Scholar 

  39. Eissa H, Gooley TA, Sorror ML, Nguyen F, Scott BL, Doney K, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol Blood Marrow Transplant. 2011;17:908–15. https://doi.org/10.1016/j.bbmt.2010.09.018.

    Article  PubMed  Google Scholar 

  40. Park S, Labopin M, Yakoub-Agha I, Delaunay J, Dhedin N, Deconinck E, et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur J Haematol. 2013;90:355–64. https://doi.org/10.1111/ejh.12073.

    Article  PubMed  Google Scholar 

  41. Symeonidis A, van Biezen A, de Wreede L, Piciocchi A, Finke J, Beelen D, et al. Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Br J Haematol. 2015;171:239–46. https://doi.org/10.1111/bjh.13576.

    Article  PubMed  Google Scholar 

  42. Itonaga H, Aoki K, Aoki J, Ishikawa T, Ishiyama K, Uchida N, et al. Prognostic impact of donor source on allogeneic hematopoietic stem cell transplantation outcomes in adults with chronic myelomonocytic leukemia: a Nationwide Retrospective Analysis in Japan. Biol Blood Marrow Transplant. 2018;24:840–8. https://doi.org/10.1016/j.bbmt.2017.11.016.

    Article  PubMed  Google Scholar 

  43. Woo J, Choi DR, Storer BE, Yeung C, Halpern AB, Salit RB, et al. Impact of clinical, cytogenetic, and molecular profiles on long-term survival after transplantation in patients with chronic myelomonocytic leukemia. Haematologica. 2020;105:652–60. https://doi.org/10.3324/haematol.2019.218677.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kongtim P, Popat U, Jimenez A, Gaballa S, El Fakih R, Rondon G, et al. Treatment with hypomethylating agents before allogeneic stem cell transplant improves progression-free survival for patients with chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2016;22:47–53. https://doi.org/10.1016/j.bbmt.2015.08.031.

    Article  PubMed  Google Scholar 

  45. Pophali P, Matin A, Mangaonkar AA, Carr R, Binder M, Al-Kali A, et al. Prognostic impact and timing considerations for allogeneic hematopoietic stem cell transplantation in chronic myelomonocytic leukemia. Blood Cancer J. 2020;10:121. https://doi.org/10.1038/s41408-020-00387-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Itzykson R, Fenaux P, Bowen D, Cross NCP, Cortes J, De Witte T, et al. Diagnosis and treatment of chronic myelomonocytic leukemias in adults: recommendations from the European Hematology Association and the European LeukemiaNet. HemaSphere. 2018;2:e150. https://doi.org/10.1097/HS9.0000000000000150.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Damaj G, Duhamel A, Robin M, Beguin Y, Michallet M, Mohty M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Société Française de Greffe de Moelle et de Thérapie-Cellulaire and the Groupe-Francophone des Myélodysplasies. J Clin Oncol. 2012;30:4533–40. https://doi.org/10.1200/JCO.2012.44.3499.

    Article  PubMed  Google Scholar 

  48. Fu Y, Schroeder T, Zabelina T, Badbaran A, Bacher U, Kobbe G, et al. Postallogeneic monitoring with molecular markers detected by pretransplant next-generation or Sanger sequencing predicts clinical relapse in patients with myelodysplastic/myeloproliferative neoplasms. Eur J Haematol. 2014;92:189–94. https://doi.org/10.1111/ejh.12223.

    Article  PubMed  Google Scholar 

  49. Beran M, Estey E, O’Brien S, Cortes J, Koller CA, Giles FJ, et al. Topotecan and cytarabine is an active combination regimen in myelodysplastic syndromes and chronic myelomonocytic leukemia. J Clin Oncol. 1999;17:2819–30. https://doi.org/10.1200/JCO.1999.17.9.2819.

    Article  PubMed  Google Scholar 

  50. Chiche E, Rahmé R, Bertoli S, Dumas P-Y, Micol J-B, Hicheri Y, et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: a multicentric French cohort. Blood Adv. 2021;5:176–84. https://doi.org/10.1182/bloodadvances.2020003159.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32. https://doi.org/10.1016/S1470-2045(09)70003-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lübbert M, Suciu S, Baila L, Rüter BH, Platzbecker U, Giagounidis A, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol. 2011;29:1987–96. https://doi.org/10.1200/JCO.2010.30.9245.

    Article  PubMed  Google Scholar 

  53. Berg JL, Perfler B, Hatzl S, Mayer M-C, Wurm S, Uhl B, et al. Micro-RNA-125a mediates the effects of hypomethylating agents in chronic myelomonocytic leukemia. Clin Epigenetics. 2021;13:1. https://doi.org/10.1186/s13148-020-00979-2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767. https://doi.org/10.1038/ncomms10767.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wijermans PW, Rüter B, Baer MR, Slack JL, Saba HI, Lübbert M. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res. 2008;32:587–91. https://doi.org/10.1016/j.leukres.2007.08.004.

    Article  PubMed  Google Scholar 

  56. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–40. https://doi.org/10.1200/JCO.2002.04.117.

    Article  PubMed  Google Scholar 

  57. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, Cortes J, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109:52–7. https://doi.org/10.1182/blood-2006-05-021162.

    Article  PubMed  Google Scholar 

  58. Aribi A, Borthakur G, Ravandi F, Shan J, Davisson J, Cortes J, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109:713–7. https://doi.org/10.1002/cncr.22457.

    Article  PubMed  Google Scholar 

  59. Costa R, Abdulhaq H, Haq B, Shadduck RK, Latsko J, Zenati M, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011;117:2690–6. https://doi.org/10.1002/cncr.25759.

    Article  PubMed  Google Scholar 

  60. Adès L, Sekeres MA, Wolfromm A, Teichman ML, Tiu RV, Itzykson R, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37:609–13. https://doi.org/10.1016/j.leukres.2013.01.004.

    Article  PubMed  Google Scholar 

  61. Alfonso A, Montalban-Bravo G, Takahashi K, Jabbour EJ, Kadia T, Ravandi F, et al. Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. Am J Hematol. 2017;92:599–606. https://doi.org/10.1002/ajh.24735.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tendas A, Cupelli L, Siniscalchi A, Scaramucci L, Giovannini M, Dentamaro T, et al. Azacitidine in chronic myelomonocytic leukemia: an effective and manageable approach. Mediterr J Hematol Infect Dis. 2014;6:e2014020. https://doi.org/10.4084/MJHID.2014.020.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pleyer L, Germing U, Sperr WR, Linkesch W, Burgstaller S, Stauder R, et al. Azacitidine in CMML: matched-pair analyses of daily-life patients reveal modest effects on clinical course and survival. Leuk Res. 2014;38:475–83. https://doi.org/10.1016/j.leukres.2014.01.006.

    Article  PubMed  Google Scholar 

  64. Iastrebner M, Jang JH, Nucifora E, Kim K, Sackmann F, Kim DH, et al. Decitabine in myelodysplastic syndromes and chronic myelomonocytic leukemia: Argentinian/South Korean multi-institutional clinical experience. Leuk Lymphoma. 2010;51:2250–7. https://doi.org/10.3109/10428194.2010.524324.

    Article  PubMed  Google Scholar 

  65. Braun T, Itzykson R, Renneville A, de Renzis B, Dreyfus F, Laribi K, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011;118:3824–31. https://doi.org/10.1182/blood-2011-05-352039.

    Article  PubMed  Google Scholar 

  66. Tantravahi SK, Szankasi P, Khorashad JS, Dao K-H, Kovacsovics T, Kelley TW, et al. A phase II study of the efficacy, safety, and determinants of response to 5-azacitidine (Vidaza®) in patients with chronic myelomonocytic leukemia. Leuk Lymphoma. 2016;57:2441–4. https://doi.org/10.3109/10428194.2016.1138295.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fianchi L, Criscuolo M, Breccia M, Maurillo L, Salvi F, Musto P, et al. High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: results of an Italian retrospective study. Leuk Lymphoma. 2013;54:658–61. https://doi.org/10.3109/10428194.2012.719617.

    Article  PubMed  Google Scholar 

  68. Wong E, Seymour JF, Kenealy M, Westerman D, Herbert K, Dickinson M. Treatment of chronic myelomonocytic leukemia with azacitidine. Leuk Lymphoma. 2013;54:878–80. https://doi.org/10.3109/10428194.2012.730615.

    Article  PubMed  Google Scholar 

  69. Santini V, Allione B, Zini G, Gioia D, Lunghi M, Poloni A, et al. A phase II, multicentre trial of decitabine in higher-risk chronic myelomonocytic leukemia. Leukemia. 2018;32:413–8. https://doi.org/10.1038/leu.2017.186.

    Article  PubMed  Google Scholar 

  70. Savona MR, Malcovati L, Komrokji R, Tiu RV, Mughal TI, Orazi A, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125:1857–65. https://doi.org/10.1182/blood-2014-10-607341.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Duchmann M, Braun T, Micol J-B, Platzbecker U, Park S, Pilorge S, et al. Validation of response assessment according to international consortium for MDS/MPN criteria in chronic myelomonocytic leukemia treated with hypomethylating agents. Blood Cancer J. 2017;7:e562. https://doi.org/10.1038/bcj.2017.41.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Subari S, Patnaik M, Alfakara D, Zblewski D, Hook C, Hashmi S, et al. Hypomethylating agents are effective in shrinking splenomegaly in patients with chronic myelomonocytic leukemia. Leuk Lymphoma. 2016;57:1714–5. https://doi.org/10.3109/10428194.2015.1105371.

    Article  PubMed  Google Scholar 

  73. Pleyer L, Leisch M, Kourakli A, Padron E, Maciejewski JP, Xicoy Cirici B, et al. Outcomes of patients with chronic myelomonocytic leukaemia treated with non-curative therapies: a retrospective cohort study. Lancet Haematol. 2021;8:e135–48. https://doi.org/10.1016/S2352-3026(20)30374-4.

    Article  PubMed  Google Scholar 

  74. Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A, et al. Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine. 2018;31:174–81. https://doi.org/10.1016/j.ebiom.2018.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Garcia-Manero G, Griffiths EA, Steensma DP, Roboz GJ, Wells R, McCloskey J, et al. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood. 2020;136:674–83. https://doi.org/10.1182/blood.2019004143.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Harel S, Cherait A, Berthon C, Willekens C, Park S, Rigal M, et al. Outcome of patients with high risk Myelodysplastic Syndrome (MDS) and advanced Chronic Myelomonocytic Leukemia (CMML) treated with decitabine after azacitidine failure. Leuk Res. 2015;39:501–4. https://doi.org/10.1016/j.leukres.2015.02.004.

    Article  PubMed  Google Scholar 

  77. Garcia J. Safety, efficacy, and patient-reported outcomes of venetoclax in combination with azacitidine for the treatment of patients with higher-risk myelodysplastic syndrome: a phase 1b study. ASH; 2020.

    Google Scholar 

  78. Montalban-Bravo G, Hammond D, DiNardo CD, Konopleva M, Borthakur G, Short NJ, et al. Activity of venetoclax-based therapy in chronic myelomonocytic leukemia. Leukemia. 2021;35:1494–9. https://doi.org/10.1038/s41375-021-01240-2.

    Article  PubMed  Google Scholar 

  79. Sevin M, Debeurme F, Laplane L, Badel S, Morabito M, Newman HL, et al. Cytokine-like protein 1-induced survival of monocytes suggests a combined strategy targeting MCL1 and MAPK in CMML. Blood. 2021; https://doi.org/10.1182/blood.2020008729.

  80. Cojocari D, Smith BN, Purkal JJ, Arrate MP, Huska JD, Xiao Y, et al. Pevonedistat and azacitidine upregulate NOXA (PMAIP1) to increase sensitivity to venetoclax in preclinical models of acute myeloid leukemia. Haematologica. 2021; https://doi.org/10.3324/haematol.2020.272609.

  81. Sekeres MA, Watts J, Radinoff A, Sangerman MA, Cerrano M, Lopez PF, et al. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 2021; https://doi.org/10.1038/s41375-021-01125-4.

  82. Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Roboz GJ, Collins R, et al. Enasidenib in patients with mutant IDH2 myelodysplastic syndromes: a phase 1 subgroup analysis of the multicentre, AG221-C-001 trial. Lancet Haematol. 2020;7:e309–19. https://doi.org/10.1016/S2352-3026(19)30284-4.

    Article  PubMed  Google Scholar 

  83. Inc MG. PHASE I DOSE ESCALATION CLINICAL TRIAL OF H3B-8800, A SPLICING... by Prof. David Steensma n.d.. https://library.ehaweb.org/eha/2019/24th/266651/david.steensma.phase.i.dose.escalation.clinical.trial.of.h3b-8800.a.splicing.html?f=listing%3D3%2Abrowseby%3D8%2Asortby%3D1%2Amedia%3D1 (Accessed May 29, 2021).

  84. Borthakur G, Popplewell L, Boyiadzis M, Foran J, Platzbecker U, Vey N, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122:1871–9. https://doi.org/10.1002/cncr.29986.

    Article  PubMed  Google Scholar 

  85. Carr RM, Vorobyev D, Lasho T, Marks DL, Tolosa EJ, Vedder A, et al. RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis. Nat Commun. 2021;12:2901. https://doi.org/10.1038/s41467-021-23186-w.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Padron E, Painter JS, Kunigal S, Mailloux AW, McGraw K, McDaniel JM, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121:5068–77. https://doi.org/10.1182/blood-2012-10-460170.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Padron E, Dezern A, Andrade-Campos M, Vaddi K, Scherle P, Zhang Q, et al. A multi-institution phase I trial of ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin Cancer Res. 2016;22:3746–54. https://doi.org/10.1158/1078-0432.CCR-15-2781.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Patnaik MM, Sallman DA, Mangaonkar AA, Heuer R, Hirvela J, Zblewski D, et al. Phase 1 study of lenzilumab, a recombinant anti-human GM-CSF antibody, for chronic myelomonocytic leukemia. Blood. 2020;136:909–13. https://doi.org/10.1182/blood.2019004352.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lucas N, Duchmann M, Rameau P, Noël F, Michea P, Saada V, et al. Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia. Leukemia. 2019;33:2466–80. https://doi.org/10.1038/s41375-019-0447-3.

    Article  PubMed  Google Scholar 

  90. Inc MG. RESULTS FROM ONGOING PHASE 1/2 CLINICAL TRIAL OF TAGRAXOFUSP... by Mrinal Patnaik n.d.. https://library.ehaweb.org/eha/2019/24th/266471/mrinal.patnaik.results.from.ongoing.phase.1.2.clinical.trial.of.tagraxofusp.html?f=listing%3D3%2Abrowseby%3D8%2Asortby%3D2%2Amedia%3D3%2Ace_id%3D1550 (Accessed May 30, 2021).

  91. Eisenwort G, Sadovnik I, Keller A, Ivanov D, Peter B, Berger D, et al. Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia. Leukemia. 2021; https://doi.org/10.1038/s41375-021-01227-z.

  92. Villaume MT, Arrate MP, Ramsey HE, Sunthankar KI, Jenkins MT, Moyo TK, et al. The delta isoform of phosphatidylinositol-3-kinase predominates in chronic myelomonocytic leukemia and can be targeted effectively with umbralisib and ruxolitinib. Exp Hematol. 2021;97:57–65.e5. https://doi.org/10.1016/j.exphem.2021.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Steensma DP, Fenaux P, Van Eygen K, Raza A, Santini V, Germing U, et al. Imetelstat achieves meaningful and durable transfusion independence in high transfusion-burden patients with lower-risk myelodysplastic syndromes in a phase II study. J Clin Oncol. 2021;39:48–56. https://doi.org/10.1200/JCO.20.01895.

    Article  PubMed  Google Scholar 

  94. Hadjadj J, Michel M, Chauveheid M-P, Godeau B, Papo T, Sacre K. Immune thrombocytopenia in chronic myelomonocytic leukemia. Eur J Haematol. 2014;93:521–6. https://doi.org/10.1111/ejh.12393.

    Article  PubMed  Google Scholar 

  95. Manoharan A, Brighton T, Gemmell R, Lopez K, Moran S, Kyle P. Platelet dysfunction in myelodysplastic syndromes: a clinicopathological study. Int J Hematol. 2002;76:272–8. https://doi.org/10.1007/BF02982798.

    Article  PubMed  Google Scholar 

  96. Chan G, DiVenuti G, Miller K. Danazol for the treatment of thrombocytopenia in patients with myelodysplastic syndrome. Am J Hematol. 2002;71:166–71. https://doi.org/10.1002/ajh.10209.

    Article  PubMed  Google Scholar 

  97. Song S. A case report: Concurrent chronic myelomonocytic leukemia and T-cell large granular lymphocytic leukemia-type clonal proliferation as detected by multiparametric flow cytometry. Cytometry B Clin Cytom. 2011;80:126–9. https://doi.org/10.1002/cyto.b.20565.

    Article  PubMed  Google Scholar 

  98. Emanuel RM, Dueck AC, Geyer HL, Kiladjian J-J, Slot S, Zweegman S, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012;30:4098–103. https://doi.org/10.1200/JCO.2012.42.3863.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V, et al. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia. 2013;27:1401–3. https://doi.org/10.1038/leu.2013.35.

    Article  PubMed  Google Scholar 

  100. Wattel E, Guerci A, Hecquet B, Economopoulos T, Copplestone A, Mahé B, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Français des Myélodysplasies and European CMML Group. Blood. 1996;88:2480–7.

    Article  PubMed  Google Scholar 

  101. Niyongere S, Lucas N, Zhou J-M, Sansil S, Pomicter AD, Balasis ME, et al. Heterogeneous expression of cytokines accounts for clinical diversity and refines prognostication in CMML. Leukemia. 2019;33:205–16. https://doi.org/10.1038/s41375-018-0203-0.

    Article  PubMed  Google Scholar 

  102. Jestin M, Tarfi S, Duchmann M, Badaoui B, Freynet N, Tran Quang V, et al. Prognostic value of monocyte subset distribution in chronic myelomonocytic leukemia: results of a multicenter study. Leukemia. 2021;35:893–6. https://doi.org/10.1038/s41375-020-0955-1.

    Article  PubMed  Google Scholar 

  103. Assi R, Kantarjian HM, Garcia-Manero G, Cortes JE, Pemmaraju N, Wang X, et al. A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. Am J Hematol. 2018;93:277–85. https://doi.org/10.1002/ajh.24972.

    Article  PubMed  Google Scholar 

  104. Vitte F, Fabiani B, Bénet C, Dalac S, Balme B, Delattre C, et al. Specific skin lesions in chronic myelomonocytic leukemia: a spectrum of myelomonocytic and dendritic cell proliferations: a study of 42 cases. Am J Surg Pathol. 2012;36:1302–16. https://doi.org/10.1097/PAS.0b013e31825dd4de.

    Article  PubMed  Google Scholar 

  105. Melody M, Butts E, Menke D, Landolfo K, Oken K, Sher T, et al. Use of tocilizumab in management of post-operative myelomonocytic leukemoid reaction. Leuk Res Rep. 2020;14:100228. https://doi.org/10.1016/j.lrr.2020.100228.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang SA, Hasserjian RP, Fox PS, Rogers HJ, Geyer JT, Chabot-Richards D, et al. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood. 2014;123:2645–51. https://doi.org/10.1182/blood-2014-02-553800.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Martiat P, Michaux JL, Rodhain J. Philadelphia-negative (Ph-) chronic myeloid leukemia (CML): comparison with Ph+ CML and chronic myelomonocytic leukemia. The Groupe Français de Cytogénétique Hématologique. Blood. 1991;78:205–11.

    Article  PubMed  Google Scholar 

  108. Maxson JE, Gotlib J, Pollyea DA, Fleischman AG, Agarwal A, Eide CA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368:1781–90. https://doi.org/10.1056/NEJMoa1214514.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pardanani A, Lasho TL, Laborde RR, Elliott M, Hanson CA, Knudson RA, et al. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. 2013;27:1870–3. https://doi.org/10.1038/leu.2013.122.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Palomo L, Meggendorfer M, Hutter S, Twardziok S, Ademà V, Fuhrmann I, et al. Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms. Blood. 2020;136:1851–62. https://doi.org/10.1182/blood.2019004229.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Breccia M, Biondo F, Latagliata R, Carmosino I, Mandelli F, Alimena G. Identification of risk factors in atypical chronic myeloid leukemia. Haematologica. 2006;91:1566–8.

    PubMed  Google Scholar 

  112. Kurzrock R, Bueso-Ramos CE, Kantarjian H, Freireich E, Tucker SL, Siciliano M, et al. BCR rearrangement-negative chronic myelogenous leukemia revisited. J Clin Oncol. 2001;19:2915–26. https://doi.org/10.1200/JCO.2001.19.11.2915.

    Article  PubMed  Google Scholar 

  113. Fontana D, Mauri M, Renso R, Docci M, Crespiatico I, Røst LM, et al. ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine. Nat Commun. 2020;11:5938. https://doi.org/10.1038/s41467-020-19721-w.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Piazza R, Magistroni V, Redaelli S, Mauri M, Massimino L, Sessa A, et al. SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub. Nat Commun. 2018;9:2192. https://doi.org/10.1038/s41467-018-04462-8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Koldehoff M, Beelen DW, Trenschel R, Steckel NK, Peceny R, Ditschkowski M, et al. Outcome of hematopoietic stem cell transplantation in patients with atypical chronic myeloid leukemia. Bone Marrow Transplant. 2004;34:1047–50. https://doi.org/10.1038/sj.bmt.1704686.

    Article  PubMed  Google Scholar 

  116. Koldehoff M, Steckel NK, Hegerfeldt Y, Ditschkowski M, Beelen DW, Elmaagacli AH. Clinical course and molecular features in 21 patients with atypical chronic myeloid leukemia. Int J Lab Hematol. 2012;34:e3–5. https://doi.org/10.1111/j.1751-553X.2011.01351.x.

    Article  PubMed  Google Scholar 

  117. Onida F, de Wreede LC, van Biezen A, Eikema D-J, Byrne JL, Iori AP, et al. Allogeneic stem cell transplantation in patients with atypical chronic myeloid leukaemia: a retrospective study from the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Br J Haematol. 2017;177:759–65. https://doi.org/10.1111/bjh.14619.

    Article  PubMed  Google Scholar 

  118. Lim S-N, Lee J-H, Lee J-H, Kim D-Y, Kim SD, Kang Y-A, et al. Allogeneic hematopoietic cell transplantation in adult patients with myelodysplastic/myeloproliferative neoplasms. Blood Res. 2013;48:178–84. https://doi.org/10.5045/br.2013.48.3.178.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fleischman AG, Maxson JE, Luty SB, Agarwal A, Royer LR, Abel ML, et al. The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood. 2013;122:3628–31. https://doi.org/10.1182/blood-2013-06-509976.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ammatuna E, Eefting M, van Lom K, Kavelaars FG, Kavelaars FF, Valk PJM, et al. Atypical chronic myeloid leukemia with concomitant CSF3R T618I and SETBP1 mutations unresponsive to the JAK inhibitor ruxolitinib. Ann Hematol. 2015;94:879–80. https://doi.org/10.1007/s00277-014-2272-0.

    Article  PubMed  Google Scholar 

  121. Pacharne S, Dovey OM, Cooper JL, Gu M, Friedrich MJ, Rajan SS, et al. SETBP1 overexpression acts in the place of class-defining mutations to drive FLT3-ITD-mutant AML. Blood Adv. 2021;5:2412–25. https://doi.org/10.1182/bloodadvances.2020003443.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Inoue D, Kitaura J, Matsui H, Hou H-A, Chou W-C, Nagamachi A, et al. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 2015;29:847–57. https://doi.org/10.1038/leu.2014.301.

    Article  PubMed  Google Scholar 

  123. Fontana D, Ramazzotti D, Aroldi A, Redaelli S, Magistroni V, Pirola A, et al. Integrated genomic, functional, and prognostic characterization of atypical chronic myeloid leukemia. Hema. 2020;4:e497. https://doi.org/10.1097/HS9.0000000000000497.

    Article  Google Scholar 

  124. Liangshu You LM. The first case of decitabine successfully in treatment of atypical chronic myeloid leukemia with CEBPA double mutation. Chemotherapy. 2013;02 https://doi.org/10.4172/2167-7700.1000114.

  125. Jabbour E, Kantarjian H, Cortes J, Thomas D, Garcia-Manero G, Ferrajoli A, et al. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer. 2007;110:2012–8. https://doi.org/10.1002/cncr.23018.

    Article  PubMed  Google Scholar 

  126. Mangaonkar AA, Reichard KK, Binder M, Coltro G, Lasho TL, Carr RM, et al. Bone marrow dendritic cell aggregates associate with systemic immune dysregulation in chronic myelomonocytic leukemia. Blood Adv. 2020;4:5425–30. https://doi.org/10.1182/bloodadvances.2020002415.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kurzrock R, Kantarjian HM, Shtalrid M, Gutterman JU, Talpaz M. Philadelphia chromosome-negative chronic myelogenous leukemia without breakpoint cluster region rearrangement: a chronic myeloid leukemia with a distinct clinical course. Blood. 1990;75:445–52.

    Article  PubMed  Google Scholar 

  128. Patnaik MM, Lasho TL, Finke CM, Hanson CA, King RL, Ketterling RP, et al. Vascular events and risk factors for thrombosis in refractory anemia with ring sideroblasts and thrombocytosis. Leukemia. 2016;30:2273–5. https://doi.org/10.1038/leu.2016.216.

    Article  PubMed  Google Scholar 

  129. Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012;120:3173–86. https://doi.org/10.1182/blood-2012-05-430876.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cazzola M, Rossi M, Malcovati L. Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative. Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood. 2013;121:260–9. https://doi.org/10.1182/blood-2012-09-399725.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95. https://doi.org/10.1056/NEJMoa1103283.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Broseus J, Florensa L, Zipperer E, Schnittger S, Malcovati L, Richebourg S, et al. Clinical features and course of refractory anemia with ring sideroblasts associated with marked thrombocytosis. Haematologica. 2012;97:1036–41. https://doi.org/10.3324/haematol.2011.053918.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Antelo G, Mangaonkar AA, Coltro G, Buradkar A, Lasho TL, Finke C, et al. Response to erythropoiesis-stimulating agents in patients with WHO-defined myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T). Br J Haematol. 2020;189:e104–8. https://doi.org/10.1111/bjh.16515.

    Article  PubMed  Google Scholar 

  134. Platzbecker U, Germing U, Götze KS, Kiewe P, Mayer K, Chromik J, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18:1338–47. https://doi.org/10.1016/S1470-2045(17)30615-0.

    Article  PubMed  Google Scholar 

  135. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382:140–51. https://doi.org/10.1056/NEJMoa1908892.

    Article  PubMed  Google Scholar 

  136. Gattermann N. Do recent randomized trial results influence which patients with myelodysplastic syndromes receive iron chelation? Hematol Oncol Clin North Am. 2020;34:465–73. https://doi.org/10.1016/j.hoc.2019.10.006.

    Article  PubMed  Google Scholar 

  137. Guglielmelli P, Carobbio A, Rumi E, De Stefano V, Mannelli L, Mannelli F, et al. Validation of the IPSET score for thrombosis in patients with prefibrotic myelofibrosis. Blood Cancer J. 2020;10:1–8. https://doi.org/10.1038/s41408-020-0289-2.

    Article  Google Scholar 

  138. Dambrauskiene R, Gerbutavicius R, Juozaityte E, Gerbutaviciene R. Thrombotic risk assessment in 185 WHO-defined essential thrombocythemia patients: single center experience. Contemp Oncol (Pozn). 2015;19:396–9. https://doi.org/10.5114/wo.2015.54083.

    Article  PubMed  Google Scholar 

  139. Zhang H, Wilmot B, Bottomly D, Dao K-HT, Stevens E, Eide CA, et al. Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood. 2019;134:867–79. https://doi.org/10.1182/blood.2019000611.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bose P, Nazha A, Komrokji RS, Patel KP, Pierce SA, Al-Ali N, et al. Mutational landscape of myelodysplastic/myeloproliferative neoplasm-unclassifiable. Blood. 2018;132:2100–3. https://doi.org/10.1182/blood-2018-05-848473.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chaudhury A, Komrokji RS, Al Ali NH, Zhang L, Vafaii P, Lancet JE. Prognosis and outcomes in MDS-MPN unclassifiable: single institution experience of a rare disorder. Blood. 2015;126:1698. https://doi.org/10.1182/blood.V126.23.1698.1698.

    Article  Google Scholar 

  142. DiNardo CD, Daver N, Jain N, Pemmaraju N, Bueso-Ramos C, Yin CC, et al. Myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN, U): natural history and clinical outcome by treatment strategy. Leukemia. 2014;28:958–61. https://doi.org/10.1038/leu.2014.8.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mangaonkar AA, Swoboda DM, Lasho TL, Finke C, Ketterling RP, Reichard KK, et al. Genomic stratification of myelodysplastic/myeloproliferative neoplasms, unclassifiable: Sorting through the unsorted. Leukemia. 2021; https://doi.org/10.1038/s41375-021-01258-6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Itzykson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabian, F., Itzykson, R. (2023). Treatment Algorithm of CMML and Other Adult MDS/MPN Subtypes. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics