Skip to main content

Treatment Algorithm of Myelodysplastic Syndromes

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia

Abstract

Myelodysplastic syndromes (MDSs) are a diverse group of myeloid neoplasms that result in ineffective hematopoiesis, various degrees of bone marrow dysplasia, peripheral cytopenias, and an increased risk of progressing to acute myeloid leukemia (AML). MDS is driven by structural chromosomal changes and somatic mutations in neoplastic myeloid cells, which are supported by an inflammatory bone marrow microenvironment.

Higher-risk MDS (HR-MDS) patients are given more invasive treatments to alter the course of the disease and prevent disease progression, while supportive care such as regular red blood cell transfusions or erythropoiesis-stimulating agent (ESA) is the main strategy to enhance the quality of life and anemia symptoms for lower-risk MDS (LR-MDS) patients. However, existing MDS treatments are not curative, and many patients experience relapse or resistance to first-line treatment. Apart from participating in a clinical trial, there are typically no additional treatment options available. Therefore, there is an unmet need for new, more effective, and tolerable MDS management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and management. Blood. 2018;131(5):505–14.

    Article  PubMed  Google Scholar 

  2. Dueck AC, Mendoza TR, Reeve BB, Sloan JA, Cleeland CS, Hay J, et al. Validation study of the patient-reported outcomes version of the common terminology criteria for adverse events (PRO-CTCAE). J Clin Oncol. 2010;12–20.

    Google Scholar 

  3. Efficace F, Gaidano G, Breccia M, Voso MT, Cottone F, Angelucci E, et al. Prognostic value of self-reported fatigue on overall survival in patients with myelodysplastic syndromes: a multicentre, prospective, observational, cohort study. Lancet Oncol. 2015;16(15):1506–14.

    Article  PubMed  Google Scholar 

  4. Platzbecker U. Treatment of MDS. Blood [Internet]. 2019 Mar 7;133(10):1096–107. Available from: https://ashpublications.org/blood/article/133/10/1096/272732/Treatment-of-MDS

  5. Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia. 2021;35(8):2182–98.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Platzbecker U. Treatment of MDS. Blood. 2019;133(10):1096–107.

    Article  PubMed  Google Scholar 

  7. Benton CB, Khan M, Sallman D, Nazha A, Nogueras González GM, Piao J, et al. Prognosis of patients with intermediate risk IPSS-R myelodysplastic syndrome indicates variable outcomes and need for models beyond IPSS-R. Am J Hematol. 2018;93(10):1245–53.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Starkman R, Alibhai S, Wells RA, Geddes M, Zhu N, Keating MM, et al. An MDS-specific frailty index based on cumulative deficits adds independent prognostic information to clinical prognostic scoring. Leukemia. 2020;34(5):1394–406.

    Article  PubMed  Google Scholar 

  9. Hellström-Lindberg E, Negrin R, Stein R, Krantz S, Lindberg G, Vardiman J, et al. Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol. 1997;99(2):344–51.

    Article  PubMed  Google Scholar 

  10. Fenaux P, Santini V, Spiriti MAA, Giagounidis A, Schlag R, Radinoff A, et al. A phase 3 randomized, placebo-controlled study assessing the efficacy and safety of epoetin-α in anemic patients with low-risk MDS. Leukemia. 2018;32(12):2648–58.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kubasch AS, Platzbecker U. Setting fire to ESA and EMA resistance: new targeted treatment options in lower risk myelodysplastic syndromes. Int J Mol Sci. 2019;20(16):3853.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Platzbecker U, Fenaux P, Adès L, Giagounidis A, Santini V, van de Loosdrecht AA, et al. Proposals for revised IWG 2018 hematological response criteria in patients with MDS included in clinical trials. Blood [Internet]. 2019 Mar 7;133(10):1020–30. Available from: https://doi.org/10.1182/blood-2018-06-857102.

  13. Cheson BD. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108(2):419–25.

    Article  PubMed  Google Scholar 

  14. Hellström-Lindberg E, Gulbrandsen N, Lindberg G, Ahlgren T, Dahl IMS, Dybedal I, et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: Significant effects on quality of life. Br J Haematol. 2003; https://doi.org/10.1046/j.1365-2141.2003.04153.x.

  15. Park S, Grabar S, Kelaidi C, Beyne-Rauzy O, Picard F, Bardet V, et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: The GFM experience. Blood. 2008; https://doi.org/10.1182/blood-2007-06-096370.

  16. Mossner M, Jann JC, Wittig J, Nolte F, Fey S, Nowak V, et al. Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure. Blood. 2016;128(9):1246–59.

    Article  PubMed  Google Scholar 

  17. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382(2):140–51.

    Article  PubMed  Google Scholar 

  18. Komrokji RS. Luspatercept in Myelodysplastic Syndromes: Who and When? Hematol/Oncol Clin North Am. 2020;34(2):393–400.

    Article  PubMed  Google Scholar 

  19. Kubasch AS, Fenaux P, Platzbecker U. Development of luspatercept to treat ineffective erythropoiesis. Blood Adv. 2021;5(5):1565–75.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Platzbecker U, Germing U, Götze KS, Kiewe P, Mayer K, Chromik J, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47.

    Article  PubMed  Google Scholar 

  21. Garcia-Manero G, Mufti GJ, Fenaux P, Buckstein R, Santini V, Díez-Campelo M, et al. Hematologic Improvement-Neutrophil and -Platelet in the MEDALIST Trial: Multilineage Data from a Phase 3, Randomized, Double-Blind, Placebo-Controlled Study of Luspatercept to Treat Anemia in Patients with Very Low-, Low-, or Intermediate-Risk Myelodysplastic. Blood [Internet]. 2019 Nov 13;134(Suppl. 1):4243. Available from: https://doi.org/10.1182/blood-2019-123048.

  22. Wobus M, Mies A, Magno V, Welzel C, Winter S, Stoelzel F, et al. Altered structure and function of mesenchymal stromal cell-derived extracellular matrix in mds can be restored by luspatercept. Blood. 2019;134(Suppl. 1):1699.

    Article  Google Scholar 

  23. Platzbecker U, Götze KS, Kiewe P, Germing U, Mayer K, Radsak M, et al. Long-term efficacy and safety of luspatercept for anemia treatment in patients with lower-risk myelodysplastic syndromes: the phase II PACE-MDS study. J Clin Oncol. 2022;40(33):3800–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006; https://doi.org/10.1056/NEJMoa061292.

  25. Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011; https://doi.org/10.1182/blood-2011-01-330126.

  26. Malcovati L, Porta MGD, Strupp C, Ambaglio I, Kuendgen A, Nachtkamp K, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based prognostic scoring system (WPSS). Haematologica. 2011; https://doi.org/10.3324/haematol.2011.044602.

  27. Almeida A, Fenaux P, List AF, Raza A, Platzbecker U, Santini V. Recent advances in the treatment of lower-risk non-del(5q) myelodysplastic syndromes (MDS). Leuk Res. 2017 Jan;52:50–7.

    Article  PubMed  Google Scholar 

  28. Santini V, Almeida A, Giagounidis A, Gröpper S, Jonasova A, Vey N, et al. Randomized phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with lower-risk non-del(5q) myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents. J Clin Oncol. 2016;34(25):2988–96.

    Article  PubMed  Google Scholar 

  29. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009; https://doi.org/10.1016/S1470-2045(09)70003-8.

  30. Mohty R, Al Hamed R, Bazarbachi A, Brissot E, Nagler A, Zeidan A, et al. Treatment of myelodysplastic syndromes in the era of precision medicine and immunomodulatory drugs: a focus on higher-risk disease. J Hematol Oncol. 2022;15(1):124.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greenberg PL, Stone RM, Al-Kali A, Bennett JM, Borate U, Brunner AM, et al. NCCN Guidelines® Insights: myelodysplastic syndromes, Version 3.2022. J Natl Compr Cancer Netw. 2022 Feb;20(2):106–17.

    Article  Google Scholar 

  32. Kröger N, Sockel K, Wolschke C, Bethge W, Schlenk RF, Wolf D, et al. Comparison between 5-azacytidine treatment and allogeneic stem-cell transplantation in elderly patients with advanced MDS according to donor availability (VidazaAllo Study). J Clin Oncol. 2021;39(30):3318–27.

    Article  PubMed  Google Scholar 

  33. Podoltsev NA, Stahl M, Zeidan AM, Gore SD. Selecting initial treatment of acute myeloid leukaemia in older adults. Blood Rev. 2017;31(2):43–62.

    Article  PubMed  Google Scholar 

  34. Silverman LR, Holland JF, Weinberg RS, Alter BP, Davis RB, Ellison RR, et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia. 1993;7(Suppl 1):21–9.

    PubMed  Google Scholar 

  35. Lübbert M, Suciu S, Baila L, Rüter BH, Platzbecker U, Giagounidis A, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol. 2011;29(15):1987–96.

    Article  PubMed  Google Scholar 

  36. Sanna A, Gozzini A, Sassolini F, Bosi A, Santini V. Decitabine treatment in higher risk MDS, CMML and AML post-MDS who failed Azacitidine. Blood. 2011;118(21):5052.

    Article  Google Scholar 

  37. Wang H, Li Y, Lv N, Li Y, Wang L, Yu L. Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann Hematol. 2018;97(11):2025–38.

    Article  PubMed  Google Scholar 

  38. Itzykson R, Thépot S, Quesnel B, Dreyfus F, Beyne-Rauzy O, Turlure P, et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood. 2011;117(2):403–11.

    Article  PubMed  Google Scholar 

  39. Ramos F, Thépot S, Pleyer L, Maurillo L, Itzykson R, Bargay J, et al. Azacitidine frontline therapy for unfit acute myeloid leukemia patients: clinical use and outcome prediction. Leuk Res. 2015;39(3):296–306.

    Article  PubMed  Google Scholar 

  40. Ravandi F, Abuasab T, Alvarado Valero Y, Issa GC, Islam R, Short NJ, et al. Phase 2 study of ASTX727 (cedazuridine/decitabine) plus venetoclax (ven) in patients with relapsed/refractory acute myeloid leukemia (AML) or previously untreated, elderly patients (pts) unfit for chemotherapy. Journal of Clinical Oncology. 2022;40(16_suppl):7037.

    Article  Google Scholar 

  41. Patel AA, Cahill K, Saygin C, Odenike O. Cedazuridine/decitabine: from preclinical to clinical development in myeloid malignancies. Blood Adv. 2021;5(8):2264–71.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bewersdorf JP, Derkach A, Gowda L, Menghrajani K, DeWolf S, Ruiz JD, et al. Venetoclax-based combinations in AML and high-risk MDS prior to and following allogeneic hematopoietic cell transplant. Leuk Lymphoma. 2021;62(14):3394–401.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Garcia JS, Wei AH, Borate U, Fong CY, Baer MR, Nolte F, et al. Safety, efficacy, and patient-reported outcomes of venetoclax in combination with azacitidine for the treatment of patients with higher-risk myelodysplastic syndrome: a phase 1b study. Blood. 2020;136(Suppl. 1):55–7.

    Article  Google Scholar 

  44. https://news.abbvie.com/news/press-releases/venetoclax-venclexta-granted-us-fda-breakthrough-therapy-designation-btd-in-higher-risk-myelodysplastic-syndrome-mds.htm.

  45. Hunt AA, Khan AB, Potter VT, McLornan D, Raj K, de Lavallade H, et al. Hypoplastic MDS is a distinct clinico-pathological entity with somatic mutations frequent in patients with prior aplastic anaemia with favorable clinical outcome. Blood. 2014;124(21):3269.

    Article  Google Scholar 

  46. Parikh AR, Olnes MJ, Barrett AJ. Immunomodulatory treatment of myelodysplastic syndromes: antithymocyte globulin, cyclosporine, and alemtuzumab. Semin Hematol. 2012;49(4):304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stahl M, DeVeaux M, de Witte T, Neukirchen J, Sekeres MA, Brunner AM, et al. The use of immunosuppressive therapy in MDS: clinical outcomes and their predictors in a large international patient cohort. Blood Adv. 2018;2(14):1765–72.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Malcovati L, Hellström-Lindberg E, Bowen D, Adès L, Cermak J, Del Cañizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943–64.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Platzbecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kubasch, A.S., Platzbecker, U. (2023). Treatment Algorithm of Myelodysplastic Syndromes. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics