Skip to main content

Therapy-Related MDS/AML and the Role of Environmental Factors

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia

Abstract

Therapy-related myeloid neoplasms (t-MNs) include acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), onsetting in patients treated with cytotoxic therapy (chemotherapy and/or radiation therapy) for a primary cancer or an autoimmune disorder.

t-MN accounts for approximately 10–20% of newly diagnosed cases of AML or MDS and can occur at any age. The risk of developing a t-MN is determined by complex interactions between the nature and dose of the chemotherapy agents and radiation intensity. Inherited risk factors and environmental exposures may then contribute to the accumulation of somatic mutations in hematopoietic stem cells and t-MN onset. Recent advances in deep sequencing techniques have shed light on the pathogenesis of t-MN, identifying clonal hematopoiesis of indeterminate potential (CHIP) as a frequent first step in the multi-hit model of t-MN. CHIP is often detectable at the time of the primary cancer diagnosis prior to any cytotoxic treatment, probably setting the fertile genomic pre-malignant state for secondary leukemogenesis. The pathogenesis of t-MN is then a multifactoral process, where the type of cancer therapy, the aging process, and the individual exposures may favor additional hit development, such as the acquisition of TP53 mutations and unfavorable karyotype abnormalities.

Patients with t-MN generally have poor prognosis (5-year overall survival <10%) and are often refractory to standard treatment strategies, with the exceptions of t-AML with recurrent translocations, including t-APL (acute promyelocytic leukemia) and core-binding factor t-AML, who should receive conventional treatment according to age and performance status. Other t-MN patients should be considered candidates for HSCT, if eligible, since this is the only potentially curative treatment. However, not all patients may benefit from transplantation, such as patients with TP53 mutations, that account for about 30–40% of all t-MN cases. The unfavorable prognosis of t-MN indicates the need for new pharmacological approaches, such as CPX-351, or venetoclax in combination with hypomethylating agents, monoclonal antibodies as magrolimab, or targeted drugs against pathogenic mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

ASXL1:

Additional sex combs like 1

BM:

Bone marrow

BMM:

Bone marrow microenvironment

CHIP:

Clonal hematopoiesis of indeterminate potential

CNA:

Copy number alterations

cnLOH :

Copy neutral loss of heterozygosity

CR:

Complete response

DAMP:

Damage-associated molecular pattern

DE:

Distally exposed

DNMT3A:

DNA methyltransferase 3A

HSC:

Hematopoietic stem cells

HSCT:

Hematopoietic stem cell transplantation

HSPC:

Hematopoietic stem/progenitor cells

KMT2A:

Histone-lysine N-methyltransferase 2A

MDS:

Myelodysplastic syndromes

MDS/MPN:

Myelodysplastic/myeloproliferative neoplasms

MSC:

Mesenchymal stem cells

OS:

Overall survival

PE:

Proximally exposed

RUNX1:

Runt-related transcription factor 1

SF3B1:

Splicing factor 3B subunit 1

SIR:

Standardized incidence ratio

SNP:

Single nucleotide polymorphisms

SNV:

Single nucleotide variants

TET2:

Tet methylcytosine dioxygenase 2

TLR4:

Toll-like receptor 4

t-MN:

Therapy-related myeloid neoplasms

TP53:

Tumor protein p53

VAF:

Variant allele frequency

References

  1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51. https://doi.org/10.1182/blood-2009-03-209262.

    Article  PubMed  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  PubMed  Google Scholar 

  3. Guru Murthy GS, Hamadani M, Dhakal B, Hari P, Atallah E. Incidence and survival of therapy related myeloid neoplasm in United States. Leuk Res. 2018;71:95–9. https://doi.org/10.1016/j.leukres.2018.07.013.

    Article  PubMed  Google Scholar 

  4. Fianchi L, Pagano L, Piciocchi A, Candoni A, Gaidano G, Breccia M, et al. Characteristics and outcome of therapy-related myeloid neoplasms: report from the Italian network on secondary leukemias. Am J Hematol. 2015;90:80–5. https://doi.org/10.1002/ajh.23966.

    Article  Google Scholar 

  5. Desai P, Roboz GJ. Clonal hematopoiesis and therapy related MDS/AML. Best practice & research. Clin Haematol. 2019;32:13–23. https://doi.org/10.1016/j.beha.2019.02.006.

    Article  Google Scholar 

  6. McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017;4:513–27. https://doi.org/10.1038/nrc.2017.60.

    Article  Google Scholar 

  7. Morton LM, Dores GM, Tucker MA, Kim CJ, Onel K, Gilbert ES, et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the united states, 1975-2008. Blood. 2013;121:2996–3004. https://doi.org/10.1182/blood-2012-08-448068.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fianchi L, Criscuolo M, Fabiani E, Falconi G, Maraglino AME, Voso MT, et al. Therapy-related myeloid neoplasms: clinical perspectives. Onco Targets Ther. 2018;17:5909–15. https://doi.org/10.2147/OTT.S101333.

    Article  Google Scholar 

  9. Leone G, Fianchi L, Voso MT. Therapy-related myeloid neoplasms. Curr Opin Oncol. 2011;23:672–80. https://doi.org/10.1097/CCO.0b013e32834bcc2a.

    Article  PubMed  Google Scholar 

  10. Morton LM, Dores GM, Schonfeld SJ, Linet MS, Sigel BS, Lam CJK, et al. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 2019;5:318–25. https://doi.org/10.1001/jamaoncol.2018.5625.

    Article  PubMed  Google Scholar 

  11. Bhatia S, Krailo MD, Chen Z, Burden L, Askin FB, Dickman PS, et al. Therapy-related myelodysplasia and acute myeloid leukemia after Ewing sarcoma and primitive neuroectodermal tumor of bone: a report from the Children’s Oncology Group. Blood. 2007;109:46–51. https://doi.org/10.1182/blood-2006-01-023101.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Morton LM, Gibson TM, Clarke CA, Lynch CF, Anderson LA, Pfeiffer R, et al. Risk of myeloid neoplasms after solid organ transplantation. Leukemia. 2014;28:2317–23. https://doi.org/10.1038/leu.2014.132.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ornstein MC, Mukherjee S, Mohan S, Elson P, Tiu RV, Saunthararajah Y, et al. Predictive factors for latency period and a prognostic model for survival in patients with therapy-related AML. Am J Hematol. 2014;89:168–73. https://doi.org/10.1002/ajh.23605.

    Article  PubMed  Google Scholar 

  14. Radivoyevitch T, Sachs RK, Gale RP, Molenaar RJ, Brenner DJ, Hill BT, et al. Defining AML and MDS second cancer risk dynamics after diagnoses of first cancers treated or not with radiation. Leukemia. 2016;30:285–94. https://doi.org/10.1038/leu.2015.258.

    Article  PubMed  Google Scholar 

  15. Cocciardi S, Dolnik A, Kapp-Schwoerer S, Rucker FG, Lux S, Blätte TJ, et al. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun. 2019;10:2031. https://doi.org/10.1038/s41467-019-09745-2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet. 2020;52:1219–26. https://doi.org/10.1038/s41588-020-00710-0.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koontz MZ, Horning SJ, Balise R, Greenberg PL, Rosenberg SA, Hoppe RT, et al. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford University experience over three generations of clinical trials. J Clin Oncol. 2013;31:592–8. https://doi.org/10.1200/JCO.2012.44.5791.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lyman GH, Dale DC, Wolff DA, Culakova E, Poniewierski MS, Kuderer NM, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol. 2010;28:2914–24. https://doi.org/10.1200/JCO.2009.25.8723.

    Article  PubMed  Google Scholar 

  19. Wong T, Ramsingh G, Young A, Miller C, Touma W, Welch J, et al. The role of TP53 mutations in the origin and evolution of therapy-related AML. Nature. 2015;518:552–5. https://doi.org/10.1038/nature13968.

    Article  PubMed  Google Scholar 

  20. Bolufer P, Collado M, Barragan E, Calasanz MJ, Colomer D, Tormo M, et al. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol. 2007;136:590–6. https://doi.org/10.1111/j.1365-2141.2006.06469.x.

    Article  PubMed  Google Scholar 

  21. Ding Y, Sun CL, Li L, Li M, Francisco L, Sabado M, et al. Genetic susceptibility to therapy-related leukemia after Hodgkin lymphoma or non-Hodgkin lymphoma: role of drug metabolism, apoptosis and DNA repair. Blood Cancer J. 2012;2:e58. https://doi.org/10.1038/bcj.2012.4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fabiani E, Falconi G, Fianchi L, Criscuolo M, Leone G, Voso MT. SETBP1 mutations in 106 patients with therapy-related myeloid neoplasms. Haematologica. 2014;99:e152–3. https://doi.org/10.3324/haematol.2014.108159.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fabiani E, Fianchi L, Falconi G, Boncompagni R, Criscuolo M, Guidi F, et al. The BCL2L10 Leu21Arg variant and risk of therapy-related myeloid neoplasms and de novo myelodysplastic syndromes. Leuk Lymphoma. 2014;55:1538–43. https://doi.org/10.3109/10428194.2013.845885.

    Article  PubMed  Google Scholar 

  24. Felix CA, Walker AH, Lange BJ, Williams TM, Winick NJ, Cheung NK, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A. 1998;95:3176–81. https://doi.org/10.1073/pnas.95.22.13176.

    Article  Google Scholar 

  25. Larson RA, Wang Y, Banerjee M, Wiemels J, Hartford C, Le Beau MM, et al. Prevalence of the inactivating 609C-->T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood. 1999;94:803–7.

    Article  PubMed  Google Scholar 

  26. Naoe T, Takeyama K, Yokozawa T, Kiyoi H, Seto M, Uike N, et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res. 2000;6:4091–5.

    PubMed  Google Scholar 

  27. van Maanen JM, de Vries J, Pappie D, van den Akker E, Lafleur VM, Retel J, et al. Cytochrome P-450-mediated O-demethylation: a route in the metabolic activation of etoposide (VP-16-213). Cancer Res. 1987;47:4658–62.

    PubMed  Google Scholar 

  28. Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res. 2004;10:2675–80. https://doi.org/10.1158/1078-0432.ccr-03-0372.

    Article  PubMed  Google Scholar 

  29. Churpek JE, Marquez R, Neistadt B, Claussen K, Lee MK, Churpek MM, et al. Inherited mutations in cancer susceptibility genes are common among survivors of breast cancer who develop therapy-related leukemia. Cancer. 2016;122:304–11. https://doi.org/10.1002/cncr.29615.

    Article  PubMed  Google Scholar 

  30. Schulz E, Valentin A, Ulz P, Beham-Schmid C, Lind K, Rupp V, et al. Germline mutations in the DNA damage response genes BRCA1, BRCA2, BARD1 and TP53 in patients with therapy related myeloid neoplasms. J Med Genet. 2012;49:422–8. https://doi.org/10.1136/jmedgenet-2011-100674.

    Article  PubMed  Google Scholar 

  31. Voso MT, Fabiani E, Zang Z, Fianchi L, Falconi G, Padella A, et al. Fanconi anemia gene variants in therapy-related myeloid neoplasms. Blood Cancer J. 2015;5:e323. https://doi.org/10.1038/bcj.2015.44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vasanthakumar A, Arnovitz S, Marquez R, Lepore J, Rafidi G, Asom A, et al. Brca1 deficiency causes bone marrow failure and spontaneous hematologic malignancies in mice. Blood. 2016;127:310–3. https://doi.org/10.1182/blood-2015-03-635599.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43–52. https://doi.org/10.1182/blood-2002-11-3343.

    Article  PubMed  Google Scholar 

  34. West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014;1310:111–8. https://doi.org/10.1111/nyas.12346.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xiao H, Shi J, Luo Y, Tan Y, He J, Xie W, et al. First report of multiple CEBPA mutations contributing to donor origin of leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood. 2011;117:5257–60. https://doi.org/10.1182/blood-2010-12-326322.

    Article  PubMed  Google Scholar 

  36. Gibson CJ, Steensma DP. New insights from studies of clonal hematopoiesis. Clin Cancer Res. 2018;24:4633–42. https://doi.org/10.1158/1078-0432.CCR-17-3044.

    Article  PubMed  Google Scholar 

  37. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16. https://doi.org/10.1182/blood-2015-03-631747.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. https://doi.org/10.1056/NEJMoa1409405.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98. https://doi.org/10.1056/NEJMoa1408617.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fabiani E, Falconi G, Fianchi L, Criscuolo M, Ottone T, Cicconi L, et al. Clonal evolution in therapy-related neoplasms. Oncotarget. 2017:8. https://doi.org/10.18632/oncotarget.14509.

  41. Gillis NK, Ball M, Zhang Q, Ma Z, Zhao YL, Yoder SJ, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 2017;18:112–21. https://doi.org/10.1016/S1470-2045(16)30627-1.

    Article  PubMed  Google Scholar 

  42. Takahashi K, Wang F, Kantarjian H, Doss D, Khanna K, Thompson E, et al. Pre-leukemic clonal hematopoiesis and the risk of therapy-related myeloid neoplasm: a case-control study. Lancet Oncol. 2017;18:100–11. https://doi.org/10.1016/S1470-2045(16)30626-X.

    Article  PubMed  Google Scholar 

  43. Agarwal P, Bhatia R. Influence of bone marrow microenvironment on leukemic stem cells: breaking up an intimate relationship. Adv Cancer Res. 2015;127:227–52. https://doi.org/10.1016/bs.acr.2015.04.007.

    Article  PubMed  Google Scholar 

  44. Bulycheva E, Rauner M, Medyouf H, Theurl I, Bornhäuser M, Hofbauer LC, et al. Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia. 2015;29:259–68. https://doi.org/10.1038/leu.2014.325. Review

    Article  PubMed  Google Scholar 

  45. Aanei CM, Flandrin P, Eloae FZ, Carasevici E, Guyotat D, Wattel E, Campos L. Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes. Stem Cells Dev. 2012;21:1604–15. https://doi.org/10.1089/scd.2011.0390.

    Article  PubMed  Google Scholar 

  46. Falconi G, Fabiani E, Fianchi L, Criscuolo M, Raffaelli CS, Bellesi S, et al. Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Exp Hematol. 2016;44:75–83. .e1–4. https://doi.org/10.1016/j.exphem.2015.10.005.

    Article  PubMed  Google Scholar 

  47. Fei C, Zhao Y, Guo J, Gu S, Li X, Chang C. Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes. Eur J Haematol. 2014;93:476–86. https://doi.org/10.1111/ejh.12385.

    Article  PubMed  Google Scholar 

  48. Geyh S, Oz S, Cadeddu RP, Fröbel J, Brückner B, Kündgenet A, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013;27:1841–51. https://doi.org/10.1038/leu.2013.193.

    Article  PubMed  Google Scholar 

  49. Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14:824–37. https://doi.org/10.1016/j.stem.2014.02.014.

    Article  PubMed  Google Scholar 

  50. Zhao ZG, Xu W, Yu HP, Fang BL, Wu SH, Li F, et al. Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes. Cancer Lett. 2012;317:136–43. https://doi.org/10.1016/j.canlet.2011.08.030.

    Article  PubMed  Google Scholar 

  51. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464:852–7. https://doi.org/10.1038/nature08851.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stoddart A, Wang J, Fernald AA, Karrison T, Anastasi J, Le Beau MM. Cell intrinsic and extrinsic factors synergize in mice with haploinsufficiency for Tp53, and two human del(5q) genes, Egr1 and Apc. Blood. 2014;123:228–38. https://doi.org/10.1182/blood-2013-05-506568.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bondar T, Medzhitov R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell. 2010;6:309–22. https://doi.org/10.1016/j.stem.2010.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. https://doi.org/10.1056/NEJMoa1301689.

    Article  Google Scholar 

  55. Singhal D, Wee LYA, Kutyna MM, Chhetri R, Geoghegan J, Schreiber AW, et al. The mutational burden of therapy-related myeloid neoplasms is similar to primary myelodysplastic syndrome but has a distinctive distribution. Leukemia. 2019;33(12):2842–53. https://doi.org/10.1038/s41375-019-0479-8.

    Article  PubMed  Google Scholar 

  56. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–31. https://doi.org/10.1016/s0092-8674(00)81871-1.

    Article  PubMed  Google Scholar 

  57. Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993;329(18):1318–27. https://doi.org/10.1056/NEJM199310283291807.

    Article  PubMed  Google Scholar 

  58. Wong TN, Miller CA, Jotte MRM, Bagegni N, Baty JD, Schmidt AP, et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun. 2018;9:1–10. https://doi.org/10.1038/s41467-018-02858-0.

    Article  Google Scholar 

  59. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26:1549–56. https://doi.org/10.1038/s41591-020-1008-z.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bowen D, Groves MJ, Burnett AK, Patel Y, Allen C, Green C, et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009;23:203–6. https://doi.org/10.1038/leu.2008.173.

    Article  PubMed  Google Scholar 

  61. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 2001;19(5):1405–13. https://doi.org/10.1200/JCO.2001.19.5.1405.

    Article  PubMed  Google Scholar 

  62. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F, et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood. 2012;120:2963–72. https://doi.org/10.1182/blood-2012-03-419622.

    Article  PubMed  Google Scholar 

  63. Kadia TM, Jain P, Ravandi F, Garcia-Manero G, Andreef M, Takahashi K, et al. TP53 mutations in newly diagnosed acute myeloid leukemia: clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016;122:3484–91. https://doi.org/10.1002/cncr.30203.

    Article  PubMed  Google Scholar 

  64. Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119:2114–21. https://doi.org/10.1182/blood-2011-08-375758.

    Article  PubMed  Google Scholar 

  65. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76. https://doi.org/10.1182/blood-2014-11-610543.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li K, Jing Y, Yang C, Liu S, Zhao Y, He X, et al. Increased leukemia-associated gene expression in benzene-exposed workers. Sci Rep. 2014;4:5369. https://doi.org/10.1038/srep05369.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Horai M, Satoh S, Matsuo M, Iwanaga M, Horio K, Jo T, et al. Chromosomal analysis of myelodysplastic syndromes among atomic bomb survivors in Nagasaki. Br J Haematol. 2018;180:381–90. https://doi.org/10.1111/bjh.15050.

    Article  PubMed  Google Scholar 

  68. Taguchi M, Mishima H, Shiozawa Y, Hayashida C, Kinoshita A, Nannya Y, et al. Genome analysis of myelodysplastic syndromes among atomic bomb survivors in Nagasaki. Haematologica. 2020;105:358–65. https://doi.org/10.3324/haematol.2019.219386.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Granfeldt Ostgard LS, Medeiros BC, Sengeløv H, Nørgaard M, Klarskov Andersen M, Høgh Dufva I, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33:3641–9. https://doi.org/10.1200/JCO.2014.60.0890.

    Article  PubMed  Google Scholar 

  70. Borthakur G, Lin E, Jain N, Estey EE, Cortes JE, O'Brien S, et al. Survival is poorer in patients with secondary core-binding factor acute myelogenous leukemia compared with de novo core-binding factor leukemia. Cancer. 2009;115:3217–21. https://doi.org/10.1002/cncr.24367.

    Article  PubMed  Google Scholar 

  71. Kayser S, Döhner K, Krauter J, Köhne CH, Horst HA, Held G, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117:2137–45. https://doi.org/10.1182/blood-2010-08-301713.

    Article  PubMed  Google Scholar 

  72. Devillier R, Mansat-De Mas V, Gelsi-Boyer V, Demur C, Murati A, Corre J, et al. Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasia-related changes. Oncotarget. 2015;6:8388–96. https://doi.org/10.18632/oncotarget.3460.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia. 2008;22:1539–41. https://doi.org/10.1038/leu.2008.143.

    Article  PubMed  Google Scholar 

  74. Fang M, Storer B, Estey E, Othus M, Zhang L, Sandmaier BM, et al. Outcome of patients with acute myeloid leukemia with monosomal karyotype who undergo hematopoietic cell transplantation. Blood. 2011;118:1490–4. https://doi.org/10.1182/blood-2011-02-339721.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Middeke JM, Fang M, Cornelissen JJ, Mohr B, Appelbaum FR, Stadler M, et al. Outcome of patients with abnl(17p) acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Blood. 2014;123:2960–7. https://doi.org/10.1182/blood-2013-12-544957.

    Article  PubMed  Google Scholar 

  76. Finke J, Schmoor C, Bertz H, Marks R, Wäsch R, Zeiser R, Hackanson B. Long-term follow-up of therapy-related myelodysplasia and AML patients treated with allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2016;51:771–7. https://doi.org/10.1038/bmt.2015.338.

    Article  PubMed  Google Scholar 

  77. Jentzsch M, Grimm J, Bill M, Brauer D, Backhaus D, Goldmann K, et al. ELN risk stratification and outcomes in secondary and therapy-related AML patients consolidated with allogeneic stem cell transplantation. Bone Marrow Transpl. 2020. Nov 19 (Online ahead of print); https://doi.org/10.1038/s41409-020-01129-1.

  78. Litzow MR, Tarima S, Pérez WS, Bolwell BJ, Cairo MS, Camitta BM, et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010;115:1850–7. https://doi.org/10.1182/blood-2009-10-249128.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32:2691–8. https://doi.org/10.1200/JCO.2013.52.3381.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ok CY, Patel KP, Garcia-Manero G, Routbort MJ, Peng J, Tang G, et al. TP53 mutation characteristics in therapy-related myelodysplastic syndromes and acute myeloid leukemia is similar to de novo diseases. J Hematol Oncol. 2015;8:45. https://doi.org/10.1186/s13045-015-0139-z.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Welch JS, Petti AA, Miller CA, Fronick CC, O'Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375:2023–36. https://doi.org/10.1056/NEJMoa1605949.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood. 2014;123:3239–46. https://doi.org/10.1182/blood-2013-12-540971.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lancet J, Uy G, Cortes J, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36:2684–92. https://doi.org/10.1200/JCO.2017.77.6112.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fianchi L, Criscuolo M, Lunghi M, Gaidano G, Breccia M, Levis A, et al. Outcome of therapy-related myeloid neoplasms treated with azacitidine. J Hematol Oncol. 2012;5:44. https://doi.org/10.1186/1756-8722-5-44.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Khan N, Hantel A, Knoebel RW, Artz A, Larson RA, Godley LA, et al. Efficacy of single-agent decitabine in relapsed and refractory acute myeloid leukemia. Leuk Lymphoma. 2017;58(9):1–7. https://doi.org/10.1080/10428194.2017.1289524.

    Article  PubMed  Google Scholar 

  86. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17. https://doi.org/10.1182/blood-2018-08-868752.

    Article  PubMed  PubMed Central  Google Scholar 

  87. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29. https://doi.org/10.1056/NEJMoa2012971.

    Article  PubMed  Google Scholar 

  88. Maslah N, Salomao N, Drevon L, Verger E, Partouche N, Ly P, et al. Synergistic effects of PRIMA-1 Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2020;105:1539–51. https://doi.org/10.3324/haematol.2019.218453. Epub 2019 Sep 5

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J Clin Oncol. 2021;15:JCO2002341. https://doi.org/10.1200/JCO.20.02341. Online ahead of print

    Article  Google Scholar 

  90. Sallman, DA, Asch AS, Kambhampati S, Al Malki MM, Zeidner JF, Donnellan W, et al. The First-in-Class Anti-CD47 Antibody Magrolimab Combined with Azacitidine Is Well-Tolerated and Effective in AML Patients: Phase 1b Results. 2020 ASH meeting, Abstract N.330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Voso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voso, M.T., Falconi, G. (2023). Therapy-Related MDS/AML and the Role of Environmental Factors. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics