Skip to main content

Immunotherapy for ALL

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia
  • 441 Accesses

Abstract

Acute lymphoblastic leukemia (ALL) is a kind of malignant disease derived from hematologic stem cells. Intensive induction/consolidation chemotherapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) is currently the standard of care (SOC) for adult patients. Recently, several new immunotherapies have shown promising efficacy for relapsed or refractory (r/r) ALL patients in early-phase clinical trials. Based on the outstanding outcomes in the treatment of r/r ALL, immunotherapies are believed to have broad prospects in the next 5 years. In this chapter, we discuss the role of immunotherapy in the clinical biology and treatment of ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. https://doi.org/10.1016/j.coi.2015.01.002. S0952-7915(15)00003-5 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harris DT, Kranz DM. Adoptive T cell therapies: a comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci. 2016;37(3):220–30. https://doi.org/10.1016/j.tips.2015.11.004. S0165-6147(15)00240-0 [pii]

    Article  PubMed  Google Scholar 

  3. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–8. https://doi.org/10.1073/pnas.86.24.10024.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720–4. https://doi.org/10.1073/pnas.90.2.720.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9(3):279–86. https://doi.org/10.1038/nm827. nm827 [pii]

    Article  PubMed  Google Scholar 

  6. Brocker T, Karjalainen K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med. 1995;181(5):1653–9. https://doi.org/10.1084/jem.181.5.1653.

    Article  PubMed  Google Scholar 

  7. Cooper LJ, Topp MS, Serrano LM, Gonzalez S, Chang WC, Naranjo A, et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood. 2003;101(4):1637–44. https://doi.org/10.1182/blood-2002-07-1989. 2002-07-1989 [pii]

    Article  PubMed  Google Scholar 

  8. Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007;13(18 Pt 1):5426–35. doi:1078-0432.CCR-07-0674 [pii]. https://doi.org/10.1158/1078-0432.CCR-07-0674.

    Article  PubMed  Google Scholar 

  9. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–71. https://doi.org/10.1182/blood-2007-12-128843. blood-2007-12-128843 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  10. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64. https://doi.org/10.1038/mt.2009.83. S1525-0016(16)31868-8 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  11. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–6. https://doi.org/10.1172/JCI46110. 46110 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park JH, Brentjens RJ. Are all chimeric antigen receptors created equal? J Clin Oncol. 2015;33(6):651–3. https://doi.org/10.1200/JCO.2014.57.5472. JCO.2014.57.5472 [pii]

    Article  PubMed  Google Scholar 

  13. Tammana S, Huang X, Wong M, Milone MC, Ma L, Levine BL, et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum Gene Ther. 2010;21(1):75–86. https://doi.org/10.1089/hum.2009.122.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther. 2007;18(8):712–25. https://doi.org/10.1089/hum.2007.028.

    Article  PubMed  Google Scholar 

  15. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. https://doi.org/10.1056/NEJMoa1709866.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8. https://doi.org/10.1038/nm.4441. nm.4441 [pii]

    Article  PubMed  Google Scholar 

  18. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. https://doi.org/10.1016/S0140-6736(14)61403-3. S0140-6736(14)61403-3 [pii]

    Article  PubMed  Google Scholar 

  19. Jiang H, Li C, Yin P, Guo T, Liu L, Xia L, et al. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia: an open-label pragmatic clinical trial. Am J Hematol. 2019;94(10):1113–22. https://doi.org/10.1002/ajh.25582.

    Article  PubMed  Google Scholar 

  20. Li S, Zhang J, Wang M, Fu G, Li Y, Pei L, et al. Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB. Br J Haematol. 2018;181(3):360–71. https://doi.org/10.1111/bjh.15195.

    Article  PubMed  Google Scholar 

  21. Jia H, Wang Z, Wang Y, Liu Y, Dai H, Tong C, et al. Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. J Hematol Oncol. 2019;12(1):57. https://doi.org/10.1186/s13045-019-0741-6. 10.1186/s13045-019-0741-6 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  22. Junfang Y. et al. Blood 2018; 132 (Suppl 1): 277.

    Google Scholar 

  23. Liang H, et al. Blood 2017; 130 (Suppl 1): 846.

    Google Scholar 

  24. Cao J, Wang G, Cheng H, Wei C, Qi K, Sang W, et al. Potent anti-leukemia activities of humanized CD19-targeted Chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2018;93(7):851–8. https://doi.org/10.1002/ajh.25108.

    Article  PubMed  Google Scholar 

  25. Cao J, Cheng H, Shi M, Wang G, Chen W, Qi K, et al. Humanized CD19-specific chimeric antigen-receptor T-cells in 2 adults with newly diagnosed B-cell acute lymphoblastic leukemia. Leukemia. 2019;33(11):2751–3. https://doi.org/10.1038/s41375-019-0516-7. 10.1038/s41375-019-0516-7 [pii]

    Article  PubMed  Google Scholar 

  26. Pan J, Yang JF, Deng BP, Zhao XJ, Zhang X, Lin YH, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia. 2017;31(12):2587–93. https://doi.org/10.1038/leu.2017.145. leu2017145 [pii]

    Article  PubMed  Google Scholar 

  27. Zhang C, Kong PY, Li S, Chen T, Ni X, Li Y, et al. Donor-derived CAR-T cells serve as a reduced-intensity conditioning regimen for haploidentical stem cell transplantation in treatment of relapsed/refractory acute lymphoblastic leukemia: case report and review of the literature. J Immunother. 2018;41(6):306–11. https://doi.org/10.1097/CJI.0000000000000233.

    Article  PubMed  Google Scholar 

  28. Chen Y, Cheng Y, Suo P, Yan C, Wang Y, Han W, et al. Donor-derived CD19-targeted T cell infusion induces minimal residual disease-negative remission in relapsed B-cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. Br J Haematol. 2017;179(4):598–605. https://doi.org/10.1111/bjh.14923.

    Article  PubMed  Google Scholar 

  29. Zhang C, Ma YY, Liu J, Liu Y, Gao L, Kong PY, et al. Preventive infusion of donor-derived CAR-T cells after haploidentical transplantation: two cases report. Medicine (Baltimore). 2019;98(29):e16498. https://doi.org/10.1097/MD.0000000000016498. 00005792-201907190-00051 [pii]

    Article  PubMed  Google Scholar 

  30. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen YH, Zhang X, Cheng YF, Chen H, Mo XD, Yan CH, et al. Long-term follow-up of CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Cytotherapy. 2020;22(12):755–61. doi:S1465-3249(20)30814-8 [pii]. https://doi.org/10.1016/j.jcyt.2020.08.002.

    Article  PubMed  Google Scholar 

  32. Goebeler ME, Bargou R. Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma. 2016;57(5):1021–32. https://doi.org/10.3109/10428194.2016.1161185.

    Article  PubMed  Google Scholar 

  33. Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y, et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 2015;7(287):287ra70. https://doi.org/10.1126/scitranslmed.aaa4802. 7/287/287ra70 [pii]

    Article  PubMed  Google Scholar 

  34. Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8. https://doi.org/10.1200/JCO.2010.32.7270. JCO.2010.32.7270 [pii]

    Article  PubMed  Google Scholar 

  35. Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40. https://doi.org/10.1200/JCO.2014.56.3247. JCO.2014.56.3247 [pii]

    Article  PubMed  Google Scholar 

  36. Topp MS, Gokbuget N, Stein AS, Zugmaier G, O'Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. https://doi.org/10.1016/S1470-2045(14)71170-2. S1470-2045(14)71170-2 [pii]

    Article  PubMed  Google Scholar 

  37. Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–70. https://doi.org/10.1038/nrc3930. nrc3930 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  38. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80. https://doi.org/10.1038/nrc2394. nrc2394 [pii]

    Article  PubMed  Google Scholar 

  39. Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17(6):e254–e62. https://doi.org/10.1016/S1470-2045(16)30030-4. S1470-2045(16)30030-4 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shang Y, Zhou F. Current advances in immunotherapy for acute leukemia: an overview of antibody, chimeric antigen receptor, immune checkpoint, and natural killer. Front Oncol. 2019;9:917. https://doi.org/10.3389/fonc.2019.00917.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58. https://doi.org/10.1158/1078-0432.CCR-11-0485. 17/20/6448 [pii]

    Article  PubMed  Google Scholar 

  42. Carol H, Szymanska B, Evans K, Boehm I, Houghton PJ, Smith MA, et al. The anti-CD19 antibody-drug conjugate SAR3419 prevents hematolymphoid relapse postinduction therapy in preclinical models of pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2013;19(7):1795–805. https://doi.org/10.1158/1078-0432.CCR-12-3613. 1078-0432.CCR-12-3613 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kantarjian HM, Lioure B, Kim SK, Atallah E, Leguay T, Kelly K, et al. A Phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(3):139–45. https://doi.org/10.1016/j.clml.2015.12.004. S2152-2650(15)01431-7 [pii]

    Article  PubMed  Google Scholar 

  44. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53. https://doi.org/10.1056/NEJMoa1509277.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Baer MR, George SL, Caligiuri MA, Sanford BL, Bothun SM, Mrozek K, et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B Study 9720. J Clin Oncol. 2008;26(30):4934–9. https://doi.org/10.1200/JCO.2008.17.0472. JCO.2008.17.0472 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  46. Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant. 2003;32(2):177–86. https://doi.org/10.1038/sj.bmt.1704086. 1704086 [pii]

    Article  PubMed  Google Scholar 

  47. Beelen DW, Ottinger HD, Ferencik S, Elmaagacli AH, Peceny R, Trenschel R, et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood. 2005;105(6):2594–600. https://doi.org/10.1182/blood-2004-04-1441. 2004-04-1441 [pii]

    Article  PubMed  Google Scholar 

  48. Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102(3):814–9. https://doi.org/10.1182/blood-2003-01-0091. 2003-01-0091 [pii]

    Article  PubMed  Google Scholar 

  49. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100. https://doi.org/10.1126/science.1068440. 295/5562/2097 [pii]

    Article  PubMed  Google Scholar 

  50. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–40. blood-2006-07-038687 [pii]. https://doi.org/10.1182/blood-2006-07-038687.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Willemze R, Rodrigues CA, Labopin M, Sanz G, Michel G, Socie G, et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 2009;23(3):492–500. https://doi.org/10.1038/leu.2008.365. leu2008365 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  52. Love PE, Hayes SM. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol. 2010;2(6):a002485. https://doi.org/10.1101/cshperspect.a002485. cshperspect.a002485 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  53. Arnon TI, Markel G, Mandelboim O. Tumor and viral recognition by natural killer cells receptors. Semin Cancer Biol. 2006;16(5):348–58. https://doi.org/10.1016/j.semcancer.2006.07.005. S1044-579X(06)00056-3 [pii]

    Article  PubMed  Google Scholar 

  54. Tassev DV, Cheng M, Cheung NK. Retargeting NK92 cells using an HLA-A2-restricted, EBNA3C-specific chimeric antigen receptor. Cancer Gene Ther. 2012;19(2):84–100. https://doi.org/10.1038/cgt.2011.66. cgt201166 [pii]

    Article  PubMed  Google Scholar 

  55. Levine JE, Braun T, Penza SL, Beatty P, Cornetta K, Martino R, et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol. 2002;20(2):405–12. https://doi.org/10.1200/JCO.2002.20.2.405.

    Article  PubMed  Google Scholar 

  56. Raiola AM, Van Lint MT, Valbonesi M, Lamparelli T, Gualandi F, Occhini D, et al. Factors predicting response and graft-versus-host disease after donor lymphocyte infusions: a study on 593 infusions. Bone Marrow Transplant. 2003;31(8):687–93. https://doi.org/10.1038/sj.bmt.1703883. 1703883 [pii]

    Article  PubMed  Google Scholar 

  57. Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15(2):433–44. https://doi.org/10.1200/JCO.1997.15.2.433.

    Article  PubMed  Google Scholar 

  58. Huff CA, Fuchs EJ, Smith BD, Blackford A, Garrett-Mayer E, Brodsky RA, et al. Graft-versus-host reactions and the effectiveness of donor lymphocyte infusions. Biol Blood Marrow Transplant. 2006;12(4):414–21. https://doi.org/10.1016/j.bbmt.2005.11.520. S1083-8791(05)00813-X [pii]

    Article  PubMed  Google Scholar 

  59. Chang YJ, Huang XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Rev. 2013;27(1):55–62. https://doi.org/10.1016/j.blre.2012.11.002. S0268-960X(12)00074-4 [pii]

    Article  PubMed  Google Scholar 

  60. Sun W, Mo XD, Zhang XH, Xu LP, Wang Y, Yan CH, et al. Chemotherapy plus DLI for relapse after haploidentical HSCT: the biological characteristics of relapse influences clinical outcomes of acute leukemia patients. Bone Marrow Transplant. 2019;54(8):1198–207. https://doi.org/10.1038/s41409-018-0406-z. 10.1038/s41409-018-0406-z [pii]

    Article  PubMed  Google Scholar 

  61. Wang Y, Liu DH, Fan ZP, Sun J, Wu XJ, Ma X, et al. Prevention of relapse using DLI can increase survival following HLA-identical transplantation in patients with advanced-stage acute leukemia: a multi-center study. Clin Transpl. 2012;26(4):635–43. https://doi.org/10.1111/j.1399-0012.2012.01626.x.

    Article  Google Scholar 

  62. Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Zhang XH, et al. Prevention of relapse using granulocyte CSF-primed PBPCs following HLA-mismatched/haploidentical, T-cell-replete hematopoietic SCT in patients with advanced-stage acute leukemia: a retrospective risk-factor analysis. Bone Marrow Transplant. 2012;47(8):1099–104. https://doi.org/10.1038/bmt.2011.213. bmt2011213 [pii]

    Article  PubMed  Google Scholar 

  63. Yan CH, Wang JZ, Liu DH, Xu LP, Chen H, Liu KY, et al. Chemotherapy followed by modified donor lymphocyte infusion as a treatment for relapsed acute leukemia after haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion: superior outcomes compared with chemotherapy alone and an analysis of prognostic factors. Eur J Haematol. 2013;91(4):304–14. https://doi.org/10.1111/ejh.12168.

    Article  PubMed  Google Scholar 

  64. Yan CH, Liu DH, Liu KY, Xu LP, Liu YR, Chen H, et al. Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood. 2012;119(14):3256–62. https://doi.org/10.1182/blood-2011-09-380386. blood-2011-09-380386 [pii]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, W., Huang, XJ. (2023). Immunotherapy for ALL. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics