Skip to main content

Immunotherapeutic Targeting of AML

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia

Abstract

The use of immunotherapy has revolutionized the field of cancer management. Patients with acute myeloid leukemia (AML) have a defective bone marrow immune environment. Understanding mechanisms of immunoediting and immune escape of AML are key for development of effective immunotherapy for AML. Multiple immunotherapeutic approaches for AML have been under development over the past few years and some are advancing toward late-stage clinical testing. In this chapter we will review our latest understanding of AML immune escape mechanisms and the latest clinical results of immunotherapeutic agents for AML, with focus in monoclonal and bispecific antibodies, adoptive cellular therapy, vaccines, and checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J. 2020;10(10):107. https://doi.org/10.1038/s41408-020-00376-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kuykendall A, Duployez N, Boissel N, Lancet JE, Welch JS. Acute myeloid leukemia: the good, the bad, and the ugly. Am Soc Clin Oncol Educ Book. 2018;38:555–73.

    PubMed  Google Scholar 

  3. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.

    PubMed  PubMed Central  Google Scholar 

  4. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.

    PubMed  Google Scholar 

  5. Valcárcel D, Martino R, Caballero D, et al. Sustained remissions of high-risk acute myeloid leukemia and myelodysplastic syndrome after reduced-intensity conditioning allogeneic hematopoietic transplantation: chronic graft-versus-host disease is the strongest factor improving survival. J Clin Oncol. 2008;26:577–84.

    PubMed  Google Scholar 

  6. Baron F, Labopin M, Niederwieser D, et al. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the acute leukemia working Party of the European group for blood and marrow transplantation. Leukemia. 2012;26:2462–8.

    PubMed  Google Scholar 

  7. Rosenow F, Berkemeier A, Krug U, et al. CD34 + lineage specific donor cell chimerism for the diagnosis and treatment of impending relapse of AML or myelodysplastic syndrome after Allo-SCT. Bone Marrow Transplant. 2013;48:1070–6.

    PubMed  Google Scholar 

  8. Mo XD, Zhang XH, Xu LP, et al. Comparison of outcomes after donor lymphocyte infusion with or without prior chemotherapy for minimal residual disease in acute leukemia/myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2017;96:829–38.

    PubMed  Google Scholar 

  9. Miyamoto T, Fukuda T, Nakashima M, Henzan T, Kusakabe S, Kobayashi N, Sugita J, Mori T, Kurokawa M, Mori SI. Donor lymphocyte infusion for relapsed hematological malignancies after unrelated allogeneic bone marrow transplantation facilitated by the Japan marrow donor program. Biol Blood Marrow Transplant. 2017;23:938–44.

    PubMed  Google Scholar 

  10. Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev. 2019;290:39–59.

    PubMed  Google Scholar 

  11. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16:151–67.

    PubMed  Google Scholar 

  12. Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R, Lee AM, Andrew Lister T, Gribben JG. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood. 2009;114:3909–16.

    PubMed  PubMed Central  Google Scholar 

  13. Ismail MM, Abdulateef NAB. Bone marrow T-cell percentage: a novel prognostic indicator in acute myeloid leukemia. Int J Hematol. 2017;105:453–64.

    PubMed  Google Scholar 

  14. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019;9:370–83.

    PubMed  Google Scholar 

  15. Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117:4501–10.

    PubMed  PubMed Central  Google Scholar 

  16. Zhou Q, Munger ME, Highfill SL, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood. 2010;116:2484–93.

    PubMed  PubMed Central  Google Scholar 

  17. Knaus HA, Berglund S, Hackl H, et al. Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight. 2018;3(21):e120974. https://doi.org/10.1172/JCI.insight.120974.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Williams P, Basu S, Garcia-Manero G, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470–81.

    PubMed  Google Scholar 

  19. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR. Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood. 2010;116:4251–61.

    PubMed  PubMed Central  Google Scholar 

  20. Schnorfeil FM, Lichtenegger FS, Emmerig K, Schlueter M, Neitz JS, Draenert R, Hiddemann W, Subklewe M. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93. https://doi.org/10.1186/s13045-015-0189-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanakry CG, Hess AD, Gocke CD, et al. Early lymphocyte recovery after intensive timed sequential chemotherapy for acute myelogenous leukemia: peripheral oligoclonal expansion of regulatory T cells. Blood. 2011;117:608–17.

    PubMed  PubMed Central  Google Scholar 

  22. Ersvaer E, Liseth K, Skavland J, Gjertsen BT, Bruserud Ø. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells. BMC Immunol. 2010;11:38. https://doi.org/10.1186/1471-2172-11-38.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, Foon KA, Whiteside TL, Boyiadzis M. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15:3325–32.

    PubMed  PubMed Central  Google Scholar 

  24. Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.

    PubMed  PubMed Central  Google Scholar 

  25. Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, Xi X. Elevated frequencies of CD4+CD25+CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer. 2011;129:1373–81.

    PubMed  Google Scholar 

  26. Zhou Q, Bucher C, Munger ME, et al. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood. 2009;114:3793–802.

    PubMed  PubMed Central  Google Scholar 

  27. Stringaris K, Sekine T, Khoder A, et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014;99:836–47.

    PubMed  PubMed Central  Google Scholar 

  28. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D, Costello RT. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCR dull phenotype induction. Blood. 2007;109:323–30.

    PubMed  Google Scholar 

  29. Verheyden S, Bernier M, Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia. 2004;18:2002–7.

    PubMed  Google Scholar 

  30. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother. 2011;60:1195–205.

    PubMed  Google Scholar 

  31. Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother. 2010;59:73–9.

    PubMed  Google Scholar 

  32. Shen M, Linn YC, Ren EC. KIR-HLA profiling shows presence of higher frequencies of strong inhibitory KIR-ligands among prognostically poor risk AML patients. Immunogenetics. 2016;68:133–44.

    PubMed  Google Scholar 

  33. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood. 2003;102:1389–96.

    PubMed  Google Scholar 

  34. Lion E, Willemen Y, Berneman ZN, Van Tendeloo VFI, Smits ELJ. Natural killer cell immune escape in acute myeloid leukemia. Leukemia. 2012;26:2019–26.

    PubMed  Google Scholar 

  35. Christopher MJ, Petti AA, Rettig MP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med. 2018;379:2330–41.

    PubMed  PubMed Central  Google Scholar 

  36. Toffalori C, Zito L, Gambacorta V, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med. 2019;25:603–11.

    PubMed  Google Scholar 

  37. Vago L, Perna SK, Zanussi M, et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med. 2009;361:478–88.

    PubMed  Google Scholar 

  38. Crucitti L, Crocchiolo R, Toffalori C, et al. Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation. Leukemia. 2015;29:1143–52.

    PubMed  Google Scholar 

  39. O’brien LJ, Guillerey C, Radford KJ. Can dendritic cell vaccination prevent leukemia relapse? Cancers (Basel). 2019;11(6):875. https://doi.org/10.3390/cancers11060875.

    Article  PubMed  Google Scholar 

  40. Ostrand-Rosenberg S, Fenselau C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol. 2018;200:422–31.

    PubMed  Google Scholar 

  41. Wang L, Jia B, Claxton DF, et al. VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML. Oncoimmunology. 2018;7(9):e1469594. https://doi.org/10.1080/2162402X.2018.1469594.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pyzer AR, Stroopinsky D, Rajabi H, et al. MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood. 2017;129:1791–801.

    PubMed  PubMed Central  Google Scholar 

  43. Kittang AO, Kordasti S, Sand KE, et al. Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2016;5(2):e1062208. https://doi.org/10.1080/2162402X.2015.1062208.

    Article  PubMed  Google Scholar 

  44. Curti A, Pandolfi S, Valzasina B, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood. 2007;109:2871–7.

    PubMed  Google Scholar 

  45. Mussai F, Egan S, Higginbotham-Jones J, et al. Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target. Blood. 2015;125:2386–96.

    PubMed  PubMed Central  Google Scholar 

  46. Fukuno K, Hara T, Tsurumi H, et al. Expression of indoleamine 2,3-dioxygenase in leukemic cells indicates an unfavorable prognosis in acute myeloid leukemia patients with intermediate-risk cytogenetics. Leuk Lymphoma. 2015;56:1398–405.

    PubMed  Google Scholar 

  47. Morsink LM, Walter RB. Novel monoclonal antibody-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32:116–26.

    PubMed  Google Scholar 

  48. Hauswirth AW, Florian S, Printz D, et al. Expression of the target receptor CD33 in CD34 +/CD38 -/CD123 + AML stem cells. Eur J Clin Investig. 2007;37:73–82.

    Google Scholar 

  49. Ehninger A, Kramer M, Röllig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014;4(6):e218. https://doi.org/10.1038/bcj.2014.39.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119:6198–208.

    PubMed  PubMed Central  Google Scholar 

  51. Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23:4110–6.

    PubMed  Google Scholar 

  52. Sekeres MA, Lancet JE, Wood BL, Grove LE, Sandalic L, Sievers EL, Jurcic JG. Randomized, phase IIb study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. Haematologica. 2013;98:119–28.

    PubMed  PubMed Central  Google Scholar 

  53. Vasu S, He S, Cheney C, et al. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood. 2016;127:2879–89.

    PubMed  PubMed Central  Google Scholar 

  54. Blum W, Ruppert AS, Mims AS, et al. Phase 1b dose escalation study of BI 836858 and azacitidine in previously untreated AML: results from beat AML S2. Blood. 2018;132:4053.

    Google Scholar 

  55. Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017;31:1855–68.

    PubMed  Google Scholar 

  56. Castaigne S, Pautas C, Terré C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379:1508–16.

    PubMed  Google Scholar 

  57. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30:3924–31.

    PubMed  Google Scholar 

  58. Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15:986–96.

    PubMed  PubMed Central  Google Scholar 

  59. Sutherland MSK, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122:1455–63.

    Google Scholar 

  60. Fathi AT, Erba HP, Lancet JE, et al. A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML. Blood. 2018;132:1125–33.

    PubMed  PubMed Central  Google Scholar 

  61. Walter RB. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin Investig Drugs. 2018;27:339–48.

    PubMed  Google Scholar 

  62. Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, Lopez AF, Parker MW. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev. 2012;250:277–302.

    PubMed  Google Scholar 

  63. Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis. 2015;55:336–46.

    PubMed  Google Scholar 

  64. Kubasch AS, Schulze F, Götze KS, et al. Anti-CD123 targeted therapy with Talacotuzumab in advanced MDS and AML after failing Hypomethylating agents—final results of the samba trial. Blood. 2018;132:4045.

    Google Scholar 

  65. Daver NG, Montesinos P, DeAngelo DJ, et al. Clinical profile of IMGN632, a novel CD123-targeting antibody-drug conjugate (ADC), in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) or Blastic Plasmacytoid dendritic cell neoplasm (BPDCN). Blood. 2019;134:734.

    Google Scholar 

  66. Pemmaraju N, Konopleva M. Approval of tagraxofusp-erzs for blastic plasmacytoid dendritic cell neoplasm. Blood Adv. 2020;4:4020–7.

    PubMed  PubMed Central  Google Scholar 

  67. Frankel A, Liu JS, Rizzieri D, Hogge D. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma. 2008;49:543–53.

    PubMed  Google Scholar 

  68. Lane AA, Sweet KL, Wang ES, et al. Results from ongoing phase 1/2 trial of SL-401 as consolidation therapy in patients with acute myeloid leukemia (AML) in remission with minimal residual disease (MRD). Blood. 2017;130:2583.

    Google Scholar 

  69. Barclay AN, Van Den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32:25–50.

    PubMed  Google Scholar 

  70. Sallman DA, Al Malki M, Asch AS, et al. Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: phase Ib results. J Clin Oncol. 2020;38:7507.

    Google Scholar 

  71. Riether C, Schürch CM, Bührer ED, Hinterbrandner M, Huguenin AL, Hoepner S, Zlobec I, Pabst T, Radpour R, Ochsenbein AF. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 2017;214:359–80.

    PubMed  PubMed Central  Google Scholar 

  72. Silence K, Dreier T, Moshir M, et al. ARGX-110, a highly potent antibody targeting CD70, eliminates tumors via both enhanced ADCC and immune checkpoint blockade. MAbs. 2014;6:523–32.

    PubMed  Google Scholar 

  73. Ochsenbein AF, Riether C, Bacher U, et al. Argx-110 targeting CD70, in combination with azacitidine, shows favorable safety profile and promising anti-leukemia activity in newly diagnosed AML patients in an ongoing phase 1/2 clinical trial. Blood. 2018;132:2680.

    Google Scholar 

  74. Williams BA, Law A, Hunyadkurti J, Desilets S, Leyton JV, Keating A. Antibody therapies for acute myeloid leukemia: unconjugated, toxin-conjugated, radio-conjugated and multivalent formats. J Clin Med. 2019;8:1261.

    PubMed  PubMed Central  Google Scholar 

  75. Pagel JM, Gooley TA, Rajendran J, et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood. 2009;114:5444–53.

    PubMed  PubMed Central  Google Scholar 

  76. Gyurkocza B. Personalized targeted radioimmunotherapy with anti-CD45 iodine (131I) apamistamab [Iomab-B] in patients with active relapsed or refractory acute myeloid leukemia results in successful donor hematopoietic cells engraftment with the timing of engraftment not related to the radiation dose delivered. Blood. 2020;136(Suppl 1):42–4.

    Google Scholar 

  77. Agarwal R, Dvorak CC, Kwon H-S, et al. Non-Genotoxic anti-CD117 antibody conditioning results in successful hematopoietic stem cell engraftment in patients with severe combined immunodeficiency. Blood. 2019;134:800.

    Google Scholar 

  78. Proctor JL, Hyzy SL, Adams HL, et al. Single doses of antibody drug conjugates (ADCs) targeted to CD117 or CD45 have potent in vivo anti-leukemia activity and survival benefit in patient derived AML models. Biol Blood Marrow Transplant. 2019;25:S100–1.

    Google Scholar 

  79. Palchaudhuri R, Hyzy SL, Proctor JL, et al. Antibody drug conjugates targeted to CD45 or CD117 enable allogeneic hematopoietic stem cell transplantation in animal models. Blood. 2018;132:3324.

    Google Scholar 

  80. Frigault MJ, Maus MV. State of the art in CAR T cell therapy for CD19+ B cell malignancies. J Clin Invest. 2020;130:1586–94.

    PubMed  PubMed Central  Google Scholar 

  81. Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21:2122–9.

    PubMed  PubMed Central  Google Scholar 

  82. Kenderian SS, Ruella M, Shestova O, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015;29:1637–47.

    PubMed  PubMed Central  Google Scholar 

  83. Dutour A, Marin V, Pizzitola I, et al. In vitro and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD 33 + acute myeloid leukemia. Adv Hematol. 2012;2012:683065.

    PubMed  PubMed Central  Google Scholar 

  84. O’Hear C, Heiber JF, Schubert I, Fey G, Geiger TL. Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia. Haematologica. 2015;100:336.

    PubMed  PubMed Central  Google Scholar 

  85. Minagawa K, Jamil MO, Al-Obaidi M, Pereboeva L, Salzman D, Erba HP, Lamb LS, Bhatia R, Mineishi S, Di Stasi A. In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia. PLoS One. 2016;11(12):e0166891. https://doi.org/10.1371/journal.Pone.0166891.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li S, Tao Z, Xu Y, et al. CD33-specific chimeric antigen receptor T cells with different co-stimulators showed potent anti-leukemia efficacy and different phenotype. Hum Gene Ther. 2018;29:626–39.

    PubMed  Google Scholar 

  87. Wang QS, Wang Y, Lv HY, Han QW, Fan H, Guo B, Wang LL, Han WD. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23:184–91.

    PubMed  Google Scholar 

  88. Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;123:2343–54.

    PubMed  PubMed Central  Google Scholar 

  89. Mardiros A, Dos Santos C, McDonald T, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122:3138–48.

    PubMed  PubMed Central  Google Scholar 

  90. Budde L, Song JY, Kim Y, et al. Remissions of acute myeloid leukemia and Blastic Plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: a first-in-human clinical trial. Blood. 2017;130:811.

    Google Scholar 

  91. Ma H, Padmanabhan IS, Parmar S, Gong Y. Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol. 2019;12:41.

    PubMed  PubMed Central  Google Scholar 

  92. Liu F, Zhang H, Sun L, et al First-in-human CLL1-CD33 compound car (CCAR) T cell therapy in relapsed and refractory acute myeloid leukemia EHA library. 12 Jun 2020. https://library.ehaweb.org/eha/2020/eha25th/294969/fang.liu.first-in-human.cll1-cd33.compound.car.28ccar29.t.cell.therapy.in.html?f=listing%3D0%2Abrowseby%3D8%2Asortby%3D1%2Asearch%3Ds149. Accessed 3 Nov 2020.

  93. Al-Homsi AS, Purev E, Lewalle P, et al. Interim results from the phase I deplethink trial evaluating the infusion of a NKG2D CAR T-cell therapy post a non-myeloablative conditioning in relapse or refractory acute myeloid leukemia and myelodysplastic syndrome patients. Blood. 2019;134:3844.

    Google Scholar 

  94. Sallman DA, Brayer JB, Poire X, et al. Results from the completed dose-escalation of the hematological arm of the phase I think study evaluating multiple infusions of NKG2D-based CAR T-cells as standalone therapy in relapse/refractory acute myeloid leukemia and Myelodysplastic syndrome patients. Blood. 2019;134:3826.

    Google Scholar 

  95. Baumeister SH, Murad J, Werner L, et al. Phase i trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res. 2019;7:100–12.

    PubMed  Google Scholar 

  96. Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8:1083–9.

    PubMed  PubMed Central  Google Scholar 

  97. Cummins KD, Gill S. Will CAR T cell therapy have a role in AML? Promises and pitfalls. Semin Hematol. 2019;56:155–63.

    PubMed  Google Scholar 

  98. Mardiana S, Gill S. CAR T cells for acute myeloid leukemia: state of the art and future directions. Front Oncol. 2020;10:697. https://doi.org/10.3389/fonc.2020.00697.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Morris EC, Stauss HJ. Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood. 2016;127:3305–11.

    PubMed  PubMed Central  Google Scholar 

  100. Provasi E, Genovese P, Lombardo A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18:807–15.

    PubMed  PubMed Central  Google Scholar 

  101. Xue S, Gao L, Gillmore R, et al. WT1-targeted immunotherapy of leukaemia. Blood Cells Mol Dis. 2004;33:288–90.

    PubMed  Google Scholar 

  102. Tawara I, Kageyama S, Miyahara Y, et al. Safety and persistence of WT1-specific T-cell receptor gene2transduced lymphocytes in patients with AML and MDS. Blood. 2017;130:1985–94.

    PubMed  Google Scholar 

  103. Chapuis AG, Ragnarsson GB, Nguyen HN, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013;5(174):174ra27. https://doi.org/10.1126/scitranslmed.3004916.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chapuis AG, Egan DN, Bar M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med. 2019;25:1064–72.

    PubMed  PubMed Central  Google Scholar 

  105. Williams KM, Hanley P, Grant M, et al. Complete remissions post infusion of multiple tumor antigen specific T cells for the treatment of high risk leukemia and lymphoma patients after HCT. Blood. 2017;130:4516.

    Google Scholar 

  106. Stringaris K, Barrett AJ. The importance of natural killer cell killer immunoglobulin-like receptor-mismatch in transplant outcomes. Curr Opin Hematol. 2017;24:489–95.

    PubMed  Google Scholar 

  107. Hansrivijit P, Gale RP, Barrett J, Ciurea SO. Cellular therapy for acute myeloid leukemia—current status and future prospects. Blood Rev. 2019;37:100578. https://doi.org/10.1016/j.blre.2019.05.002.

    Article  PubMed  Google Scholar 

  108. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7.

    PubMed  Google Scholar 

  109. Cooley S, He F, Bachanova V, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019;3:1970–80.

    PubMed  PubMed Central  Google Scholar 

  110. Romee R, Rosario M, Berrien-Elliott MM, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123. https://doi.org/10.1126/scitranslmed.aaf2341.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ciurea SO, Schafer JR, Bassett R, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130:1857–68.

    PubMed  PubMed Central  Google Scholar 

  112. Fehniger TA, Miller JS, Stuart RK, et al. A phase 1 trial of CNDO-109–activated natural killer cells in patients with high-risk acute myeloid leukemia. Biol Blood Marrow Transplant. 2018;24:1581–9.

    PubMed  PubMed Central  Google Scholar 

  113. Guy DG, Uy GL. Bispecific antibodies for the treatment of acute myeloid leukemia. Curr Hematol Malig Rep. 2018;13:417–25.

    PubMed  PubMed Central  Google Scholar 

  114. Messaoudene M, Mourikis TP, Michels J, et al. T-cell bispecific antibodies in node-positive breast cancer: novel therapeutic avenue for MHC class I loss variants. Ann Oncol. 2019;30:934–44.

    PubMed  Google Scholar 

  115. Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117:4542–51.

    PubMed  Google Scholar 

  116. Subklewe M, Stein A, Walter RB, et al. Preliminary results from a phase 1 first-in-human study of AMG 673, a novel half-life extended (HLE) anti-CD33/CD3 BiTE® (Bispecific T-cell engager) in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML). Blood. 2019;134:833. https://doi.org/10.1182/blood-2019-127977.

    Article  Google Scholar 

  117. Westervelt P, Cortes JE, Altman JK, Long M, Oehler VG, Gojo I, Guenot J, Chun P, Roboz GJ. Phase 1 first-in-human trial of AMV564, a bivalent Bispecific (2:2) CD33/CD3 T-cell engager, in patients with relapsed/refractory acute myeloid leukemia (AML). Blood. 2019;134(Suppl_1):834. https://doi.org/10.1182/blood-2019-129042.

    Article  Google Scholar 

  118. Leong SR, Sukumaran S, Hristopoulos M, et al. An anti-CD3/anti–CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 2017;129:609–18.

    PubMed  PubMed Central  Google Scholar 

  119. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20:838–47.

    PubMed  Google Scholar 

  120. Nguyen DH, Ball ED, Varki A. Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol. 2006;34(6):728–35. https://doi.org/10.1016/j.exphem.2006.03.003.

    Article  PubMed  Google Scholar 

  121. Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell–engaging antibody AMG 330. Blood. 2014;123:356–65.

    PubMed  Google Scholar 

  122. Friedrich M, Henn A, Raum T, et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell–engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13:1549–57.

    PubMed  Google Scholar 

  123. Ravandi F, Stein AS, Kantarjian HM, Walter RB, Paschka P, Jongen-Lavrencic M, Ossenkoppele GJ, Yang Z, Mehta B, Subklewe M. A phase 1 first-in-human study of AMG 330, an anti-CD33 Bispecific T-cell engager (BiTE®) antibody construct, in relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2018;132:25.

    Google Scholar 

  124. Stamova S, Cartellieri M, Feldmann A, et al. Unexpected recombinations in single chain bispecific anti-CD3–anti-CD33 antibodies can be avoided by a novel linker module. Mol Immunol. 2011;49:474–82.

    PubMed  Google Scholar 

  125. Reusch U, Harrington KH, Gudgeon CJ, et al. Characterization of CD33/CD3 tetravalent Bispecific tandem Diabodies (TandAbs) for the treatment of acute myeloid leukemia. Clin Cancer Res. 2016;22:5829–38.

    PubMed  Google Scholar 

  126. Krupka C, Kufer P, Kischel R, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. 2016;30:484–91.

    PubMed  Google Scholar 

  127. Laszlo GS, Gudgeon CJ, Harrington KH, Walter RB. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J. 2015;5:e340.

    PubMed  PubMed Central  Google Scholar 

  128. Herrmann M, Krupka C, Deiser K, et al. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood. 2018;132:2484–94.

    PubMed  Google Scholar 

  129. Testa U, Riccioni R, Militi S, et al. Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100:2980–8.

    PubMed  Google Scholar 

  130. Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.

    PubMed  Google Scholar 

  131. Vergez F, Green AS, Tamburini J, et al. High levels of CD34+CD38low/−CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucémies Aiguës et maladies du sang (GOELAMS) study. Haematologica. 2011;96:1792–8.

    PubMed  PubMed Central  Google Scholar 

  132. Al-Hussaini M, Rettig MP, Ritchey JK, et al. Targeting CD123 in acute myeloid leukemia using a T-cCell-directed dual-affinity retargeting platform. Blood. 2016;127:122–31.

    PubMed  PubMed Central  Google Scholar 

  133. Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137(6):751–62. https://doi.org/10.1182/blood.2020007732.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Vadakekolathu J, Lai C, Reeder S, et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020;4:5011–24.

    PubMed  PubMed Central  Google Scholar 

  135. Vadakekolathu J, Minden MD, Hood T, et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med. 2020;12(546):eaaz0463. https://doi.org/10.1126/scitranslmed.aaz0463.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wiernik A, Foley B, Zhang B, et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res. 2013;19:3844–55.

    PubMed  PubMed Central  Google Scholar 

  137. Vallera DA, Felices M, McElmurry R, et al. IL15 Trispecific Killer Engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22:3440–50.

    PubMed  PubMed Central  Google Scholar 

  138. Gökbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131:1522–31.

    PubMed  PubMed Central  Google Scholar 

  139. Foà R, Bassan R, Vitale A, et al. Dasatinib–Blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N Engl J Med. 2020;383:1613–23.

    PubMed  Google Scholar 

  140. Williams P, Basu S, Garcia-Manero G, et al. Checkpoint expression by acute myeloid leukemia (AML) and the immune microenvironment suppresses adaptive immunity. Blood. 2017;130:185.

    Google Scholar 

  141. Chen C, Liang C, Wang S, Chio CL, Zhang Y, Zeng C, Chen S, Wang C, Li Y. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol. 2020;13:28.

    PubMed  PubMed Central  Google Scholar 

  142. Boddu P, Kantarjian H, Garcia-Manero G, Allison J, Sharma P, Daver N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma. 2018;59:790–802.

    PubMed  Google Scholar 

  143. Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53.

    PubMed  PubMed Central  Google Scholar 

  144. Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28:1280–8.

    PubMed  Google Scholar 

  145. Zeidan AM, Cavenagh J, Voso MT, et al. Efficacy and safety of Azacitidine (AZA) in combination with the anti-PD-L1 Durvalumab (durva) for the front-line treatment of older patients (pts) with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy (IC) and Pts with higher-risk my. Blood. 2019;134:829.

    Google Scholar 

  146. Ravandi F, Assi R, Daver N, et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019;6:e480–8.

    PubMed  PubMed Central  Google Scholar 

  147. Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF, Berneman ZN, Anguille S. Dendritic cell-based immunotherapy of acute myeloid leukemia. J Clin Med. 2019;8:579.

    PubMed  PubMed Central  Google Scholar 

  148. Anguille S, Van de Velde AL, Smits EL, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130:1713–21.

    PubMed  PubMed Central  Google Scholar 

  149. Shah NN, Loeb DM, Khuu H, Stroncek D, Ariyo T, Raffeld M, Delbrook C, Mackall CL, Wayne AS, Fry TJ. Induction of immune response after allogeneic Wilms’ tumor 1 dendritic cell vaccination and donor lymphocyte infusion in patients with hematologic malignancies and post-transplantation relapse. Biol Blood Marrow Transplant. 2016;22:2149–54.

    PubMed  PubMed Central  Google Scholar 

  150. Rosenblatt J, Stone RM, Uhl L, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016;8:368ra171.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.F.D. supported by grants from the NIH/NCI: Genomics of Acute Myeloid Leukemia Program Project grant (P01 CA101937), an NCI Outstanding Investigator Award (R35 CA197561), and a Specialized Program of Research Excellence in Acute Myeloid Leukemia grant (P50 CA171963).

Conflict of Interest

I.M. and B.A.: none. J.F.D. honoraria: Rivervest; research support: Macrogenics, Bioline, NeoImmuneTech; ownership and equity: Magenta Therapeutics, WUGEN.

Conception and Design

All authors

Financial Support

John F. DiPersio

Administrative Support

John F. DiPersio

Provision of Study Materials or Patients

John F. DiPersio

Collection and Assembly of Data

Ibraheem Motabi, Bader Alahmari, and John F. DiPersio

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. DiPersio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Motabi, I., Alahmari, B., DiPersio, J.F. (2023). Immunotherapeutic Targeting of AML. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics