Skip to main content

Basic Hematopoiesis and Leukemia Stem Cells

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia

Abstract

There have been significant advances in the knowledge and understanding of hematopoiesis over the last century. Detailed functional, phenotypic, and genetic studies on hematopoietic stem and progenitor cells as well as cellular subsets have facilitated efforts in the diagnosis and prognostication of various diseases of the bone marrow. Identification of myriad cellular pathways has also facilitated the development of new drugs for the treatment of these diseases, especially for the blood cancers. Current development of novel techniques for the expansion and genetic modification of hematopoietic stem cells, mesenchymal stromal cells, and immune cells will further expand the toolbox for treating patients with otherwise fatal cancers and bone marrow diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadler TW, Langman J. Langman’s medical embryology. 12th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  2. Murphy DB, Davidson MW. Fundamentals of light microscopy and electronic imaging. 2nd ed. Hoboken, NJ: Wiley-Blackwell; 2013.

    Google Scholar 

  3. Hajdu SI. A note from history: the discovery of blood cells. Ann Clin Lab Sci. 2003;33(2):237–8.

    PubMed  Google Scholar 

  4. Kampen KR. The discovery and early understanding of leukemia. Leuk Res. 2012;36(1):6–13.

    PubMed  Google Scholar 

  5. Lefrere JJ, Berche P. Karl Landsteiner discovers the blood groups. Transfus Clin Biol. 2010;17(1):1–8.

    PubMed  Google Scholar 

  6. Rekers PE, Coulter MP, Warren SL. Effect of transplantation of bone marrow into irradiated animals. Arch Surg. 1950;60(4):635–67.

    Google Scholar 

  7. Barnes DW, et al. Treatment of murine leukaemia with X rays and homologous bone marrow; preliminary communication. Br Med J. 1956;2(4993):626–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas ED, et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–6.

    CAS  PubMed  Google Scholar 

  9. Granot N, Storb R. History of hematopoietic cell transplantation: challenges and progress. Haematologica. 2020;105(12):2716–29.

    PubMed  PubMed Central  Google Scholar 

  10. Niederwieser D, et al. One and half million hematopoietic stem cell transplants (HSCT). Dissemination, trends and potential to improve activity by telemedicine from the worldwide network for blood and marrow transplantation (WBMT). Blood. 2019;134(Suppl_1):2035.

    Google Scholar 

  11. Wright DE, et al. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001;294(5548):1933–6.

    CAS  PubMed  Google Scholar 

  12. Massberg S, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell. 2007;131(5):994–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11(1):34–44.

    PubMed  Google Scholar 

  14. Wilson NK, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015;16(6):712–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature. 2018;553(7689):418–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun J, et al. Clonal dynamics of native haematopoiesis. Nature. 2014;514(7522):322–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Busch K, et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015;518(7540):542–6.

    CAS  PubMed  Google Scholar 

  18. Adolfsson J, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.

    CAS  PubMed  Google Scholar 

  19. Doulatov S, et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 2010;11(7):585–93.

    CAS  PubMed  Google Scholar 

  20. Pietras EM, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. 2015;17(1):35–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Olsson A, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537(7622):698–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin KK, Goodell MA. Detection of hematopoietic stem cells by flow cytometry. Methods Cell Biol. 2011;103:21–30.

    CAS  PubMed  Google Scholar 

  23. Majeti R, Park CY, Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 2007;1(6):635–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Craig W, et al. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med. 1993;177(5):1331–42.

    CAS  PubMed  Google Scholar 

  25. Notta F, et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science. 2011;333(6039):218–21.

    CAS  PubMed  Google Scholar 

  26. Handgretinger R, Kuci S. CD133-positive hematopoietic stem cells: from biology to medicine. Adv Exp Med Biol. 2013;777:99–111.

    CAS  PubMed  Google Scholar 

  27. Maillard L, et al. CD117(hi) expression identifies a human fetal hematopoietic stem cell population with high proliferation and self-renewal potential. Haematologica. 2020;105(2):e43–7.

    PubMed  PubMed Central  Google Scholar 

  28. Chitteti BR, et al. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood. 2014;124(4):519–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cossarizza A, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019;49(10):1457–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Manz MG, et al. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002;99(18):11872–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hao QL, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood. 2001;97(12):3683–90.

    CAS  PubMed  Google Scholar 

  32. Bari S, et al. Protective role of functionalized single walled carbon nanotubes enhance ex vivo expansion of hematopoietic stem and progenitor cells in human umbilical cord blood. Nanomedicine. 2013;9(8):1304–16.

    CAS  PubMed  Google Scholar 

  33. Rundberg Nilsson A, Bryder D, Pronk CJ. Frequency determination of rare populations by flow cytometry: a hematopoietic stem cell perspective. Cytometry A. 2013;83(8):721–7.

    PubMed  Google Scholar 

  34. Takizawa H, et al. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med. 2011;208(2):273–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Matatall KA, Kadmon CS, King KY. Detecting hematopoietic stem cell proliferation using BrdU incorporation. Methods Mol Biol. 2018;1686:91–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Spohn G, et al. Automated CD34+ cell isolation of peripheral blood stem cell apheresis product. Cytotherapy. 2015;17(10):1465–71.

    CAS  PubMed  Google Scholar 

  37. Servida F, et al. Functional and morphological characterization of immunomagnetically selected CD34+ hematopoietic progenitor cells. Stem Cells. 1996;14(4):430–8.

    CAS  PubMed  Google Scholar 

  38. Sarma NJ, Takeda A, Yaseen NR. Colony forming cell (CFC) assay for human hematopoietic cells. J Vis Exp. 2010;46:2195.

    Google Scholar 

  39. Wognum B, et al. Colony forming cell assays for human hematopoietic progenitor cells. Methods Mol Biol. 2013;946:267–83.

    CAS  PubMed  Google Scholar 

  40. Yang H, et al. Association of post-thaw viable CD34+ cells and CFU-GM with time to hematopoietic engraftment. Bone Marrow Transplant. 2005;35(9):881–7.

    CAS  PubMed  Google Scholar 

  41. Page KM, et al. Total colony-forming units are a strong, independent predictor of neutrophil and platelet engraftment after unrelated umbilical cord blood transplantation: a single-center analysis of 435 cord blood transplants. Biol Blood Marrow Transplant. 2011;17(9):1362–74.

    PubMed  Google Scholar 

  42. Gartner S, Kaplan HS. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A. 1980;77(8):4756–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitlock CA, Witte ON. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci U S A. 1982;79(11):3608–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller JS, Verfaillie C, McGlave P. The generation of human natural killer cells from CD34+/DR- primitive progenitors in long-term bone marrow culture. Blood. 1992;80(9):2182–7.

    CAS  PubMed  Google Scholar 

  45. van Os R, Kamminga LM, de Haan G. Stem cell assays: something old, something new, something borrowed. Stem Cells. 2004;22(7):1181–90.

    PubMed  Google Scholar 

  46. Ishikawa F, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005;106(5):1565–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shultz LD, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    CAS  PubMed  Google Scholar 

  48. Pearson T, et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol. 2008;154(2):270–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicolini FE, et al. NOD/SCID mice engineered to express human IL-3, GM-CSF and steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia. 2004;18(2):341–7.

    CAS  PubMed  Google Scholar 

  50. Matsuda M, et al. Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci Alliance. 2019;2(2):e201800195.

    PubMed  PubMed Central  Google Scholar 

  51. Theocharides AP, et al. Humanized hemato-lymphoid system mice. Haematologica. 2016;101(1):5–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kenney LL, et al. Humanized mouse models for transplant immunology. Am J Transplant. 2016;16(2):389–97.

    CAS  PubMed  Google Scholar 

  53. Chabannon C, et al. Hematopoietic stem cell transplantation in its 60s: a platform for cellular therapies. Sci Transl Med. 2018;10(436):eaap9630.

    PubMed  Google Scholar 

  54. Lund TC, et al. Advances in umbilical cord blood manipulation-from niche to bedside. Nat Rev Clin Oncol. 2015;12(3):163–74.

    PubMed  Google Scholar 

  55. Hwang WY. Haematopoietic graft engineering. Ann Acad Med Singap. 2004;33(5):551–8.

    CAS  PubMed  Google Scholar 

  56. Bari S, et al. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation. Biol Blood Marrow Transplant. 2015;21(6):1008–19.

    PubMed  Google Scholar 

  57. Bari S, et al. Mitochondrial superoxide reduction and cytokine secretion skewing by carbon nanotube scaffolds enhance ex vivo expansion of human cord blood hematopoietic progenitors. Nanomedicine. 2015;11(7):1643–56.

    CAS  PubMed  Google Scholar 

  58. Chu PP, et al. Intercellular cytosolic transfer correlates with mesenchymal stromal cell rescue of umbilical cord blood cell viability during ex vivo expansion. Cytotherapy. 2012;14(9):1064–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wagner JE Jr, et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell. 2016;18(1):144–55.

    CAS  PubMed  Google Scholar 

  60. Cohen S, et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol. 2020;7(2):e134–45.

    PubMed  Google Scholar 

  61. Horwitz ME, et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol. 2019;37(5):367–74.

    CAS  PubMed  Google Scholar 

  62. Horwitz ME, et al. Omidubicel versus standard myeloablative umbilical cord blood transplantation: results of a phase III randomized study. Blood. 2021;138(16):1429–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Esrick EB, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021;384(3):205–15.

    CAS  PubMed  Google Scholar 

  64. Cromer MK, et al. Gene replacement of alpha-globin with beta-globin restores hemoglobin balance in beta-thalassemia-derived hematopoietic stem and progenitor cells. Nat Med. 2021;27(4):677–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pang WW, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A. 2011;108(50):20012–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. de Haan G, Nijhof W, Van Zant G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood. 1997;89(5):1543–50.

    PubMed  Google Scholar 

  67. Dykstra B, et al. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011;208(13):2691–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nygren JM, Bryder D, Jacobsen SE. Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. J Immunol. 2006;177(1):201–8.

    CAS  PubMed  Google Scholar 

  69. Janzen V, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443(7110):421–6.

    CAS  PubMed  Google Scholar 

  70. Kowalczyk MS, et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 2015;25(12):1860–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pietras EM, Warr MR, Passegue E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011;195(5):709–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sudo K, et al. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000;192(9):1273–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rossi DJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102(26):9194–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rundberg Nilsson A, et al. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/Erythroid bias. PLoS One. 2016;11(7):e0158369.

    PubMed  PubMed Central  Google Scholar 

  75. Grover A, et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun. 2016;7:11075.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood. 2005;106(4):1479–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Morrison SJ, et al. The aging of hematopoietic stem cells. Nat Med. 1996;2(9):1011–6.

    CAS  PubMed  Google Scholar 

  78. Jaiswal S, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    PubMed  PubMed Central  Google Scholar 

  79. Florian MC, et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 2018;16(9):e2003389.

    PubMed  PubMed Central  Google Scholar 

  80. Xing Z, et al. Increased hematopoietic stem cell mobilization in aged mice. Blood. 2006;108(7):2190–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Adams PD, Jasper H, Rudolph KL. Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell. 2015;16(6):601–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rossi DJ, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725–9.

    CAS  PubMed  Google Scholar 

  83. Walter D, et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 2015;520(7548):549–52.

    CAS  PubMed  Google Scholar 

  84. Miyamoto K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1(1):101–12.

    CAS  PubMed  Google Scholar 

  85. Tothova Z, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128(2):325–39.

    CAS  PubMed  Google Scholar 

  86. Sun D, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14(5):673–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Klauke K, et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol. 2013;15(4):353–62.

    CAS  PubMed  Google Scholar 

  88. Florian MC, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10(5):520–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ho TT, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543(7644):205–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mohrin M, et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 2015;347(6228):1374–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Norddahl GL, et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell. 2011;8(5):499–510.

    CAS  PubMed  Google Scholar 

  92. Flach J, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512(7513):198–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Florian MC, et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature. 2013;503(7476):392–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vilchez D, Simic MS, Dillin A. Proteostasis and aging of stem cells. Trends Cell Biol. 2014;24(3):161–70.

    CAS  PubMed  Google Scholar 

  95. Ho YH, Mendez-Ferrer S. Microenvironmental contributions to hematopoietic stem cell aging. Haematologica. 2020;105(1):38–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013;13(5):376–89.

    CAS  PubMed  Google Scholar 

  97. Verovskaya EV, Dellorusso PV, Passegue E. Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation. Trends Mol Med. 2019;25(6):494–515.

    PubMed  PubMed Central  Google Scholar 

  98. Borghesan M, et al. A senescence-centric view of aging: implications for longevity and disease. Trends Cell Biol. 2020;30(10):777–91.

    CAS  PubMed  Google Scholar 

  99. Baker DJ, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Attema JL, et al. Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence. Oncogene. 2009;28(22):2238–43.

    CAS  PubMed  Google Scholar 

  101. Chang J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.

    CAS  PubMed  Google Scholar 

  102. Blackburn EH. Telomere states and cell fates. Nature. 2000;408(6808):53–6.

    CAS  PubMed  Google Scholar 

  103. Egan ED, Collins K. Biogenesis of telomerase ribonucleoproteins. RNA. 2012;18(10):1747–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Venteicher AS, et al. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell. 2008;132(6):945–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vulliamy T, et al. Association between aplastic anaemia and mutations in telomerase RNA. Lancet. 2002;359(9324):2168–70.

    CAS  PubMed  Google Scholar 

  106. Armanios MY, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007;356(13):1317–26.

    CAS  PubMed  Google Scholar 

  107. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361(24):2353–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Feng J, et al. The RNA component of human telomerase. Science. 1995;269(5228):1236–41.

    CAS  PubMed  Google Scholar 

  109. Nakamura TM, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277(5328):955–9.

    CAS  PubMed  Google Scholar 

  110. Kim NW, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.

    CAS  PubMed  Google Scholar 

  111. Levy MZ, et al. Telomere end-replication problem and cell aging. J Mol Biol. 1992;225(4):951–60.

    CAS  PubMed  Google Scholar 

  112. Colla S, et al. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome. Cancer Cell. 2015;27(5):644–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yui J, Chiu CP, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91(9):3255–62.

    CAS  PubMed  Google Scholar 

  114. Aubert G, et al. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8(5):e1002696.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Calado RT, et al. Short telomeres result in chromosomal instability in hematopoietic cells and precede malignant evolution in human aplastic anemia. Leukemia. 2012;26(4):700–7.

    CAS  PubMed  Google Scholar 

  116. Zhou T, et al. Myelodysplastic syndrome: an inability to appropriately respond to damaged DNA? Exp Hematol. 2013;41(8):665–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rudolph KL, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96(5):701–12.

    CAS  PubMed  Google Scholar 

  118. Sekulovic S, et al. Prolonged self-renewal activity unmasks telomerase control of telomere homeostasis and function of mouse hematopoietic stem cells. Blood. 2011;118(7):1766–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ju Z, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med. 2007;13(6):742–7.

    CAS  PubMed  Google Scholar 

  120. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33(5):787–91.

    CAS  PubMed  Google Scholar 

  121. Ropio J, et al. Telomerase activation in hematological malignancies. Genes (Basel). 2016;7(9):61.

    PubMed  Google Scholar 

  122. Azouz A, et al. Epigenetic plasticity of hTERT gene promoter determines retinoid capacity to repress telomerase in maturation-resistant acute promyelocytic leukemia cells. Leukemia. 2010;24(3):613–22.

    CAS  PubMed  Google Scholar 

  123. Dessain SK, et al. Methylation of the human telomerase gene CpG Island. Cancer Res. 2000;60(3):537–41.

    CAS  PubMed  Google Scholar 

  124. Bechter OE, et al. CpG Island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia. Exp Hematol. 2002;30(1):26–33.

    CAS  PubMed  Google Scholar 

  125. Zinn RL, et al. hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res. 2007;67(1):194–201.

    CAS  PubMed  Google Scholar 

  126. Pettigrew KA, et al. Differential TERT promoter methylation and response to 5-aza-2′-deoxycytidine in acute myeloid leukemia cell lines: TERT expression, telomerase activity, telomere length, and cell death. Genes Chromosomes Cancer. 2012;51(8):768–80.

    CAS  PubMed  Google Scholar 

  127. Kumari A, et al. Positive regulation of human telomerase reverse transcriptase gene expression and telomerase activity by DNA methylation in pancreatic cancer. Ann Surg Oncol. 2009;16(4):1051–9.

    PubMed  Google Scholar 

  128. Licht JD. DNA methylation inhibitors in cancer therapy: the immunity dimension. Cell. 2015;162(5):938–9.

    CAS  PubMed  Google Scholar 

  129. Guilleret I, et al. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer. 2002;101(4):335–41.

    CAS  PubMed  Google Scholar 

  130. Gnyszka A, Jastrzebski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013;33(8):2989–96.

    CAS  PubMed  Google Scholar 

  131. Wang S, Hu C, Zhu J. Distinct and temporal roles of nucleosomal remodeling and histone deacetylation in the repression of the hTERT gene. Mol Biol Cell. 2010;21(5):821–32.

    PubMed  PubMed Central  Google Scholar 

  132. Liu C, et al. The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res. 2007;67(6):2626–31.

    CAS  PubMed  Google Scholar 

  133. Guccione E, et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol. 2006;8(7):764–70.

    CAS  PubMed  Google Scholar 

  134. Woo HJ, et al. Induction of apoptosis and inhibition of telomerase activity by trichostatin A, a histone deacetylase inhibitor, in human leukemic U937 cells. Exp Mol Pathol. 2007;82(1):77–84.

    CAS  PubMed  Google Scholar 

  135. Zhang A, et al. Frequent amplification of the telomerase reverse transcriptase gene in human tumors. Cancer Res. 2000;60(22):6230–5.

    CAS  PubMed  Google Scholar 

  136. Zhao Y, et al. Rearrangement of upstream sequences of the hTERT gene during cellular immortalization. Genes Chromosomes Cancer. 2009;48(11):963–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Nagel I, et al. Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies. Blood. 2010;116(8):1317–20.

    CAS  PubMed  Google Scholar 

  138. Schilling G, et al. Molecular characterization of chromosomal band 5p15.33: a recurrent breakpoint region in mantle cell lymphoma involving the TERT-CLPTM1L locus. Leuk Res. 2013;37(3):280–6.

    CAS  PubMed  Google Scholar 

  139. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

    CAS  PubMed  Google Scholar 

  140. Bhatia S, Kaul D, Varma N. Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol Cell Biochem. 2010;340(1–2):97–106.

    CAS  PubMed  Google Scholar 

  141. Yan T, et al. HoxC5 and miR-615-3p target newly evolved genomic regions to repress hTERT and inhibit tumorigenesis. Nat Commun. 2018;9(1):100.

    PubMed  PubMed Central  Google Scholar 

  142. Bijl J, et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood. 1996;87(5):1737–45.

    CAS  PubMed  Google Scholar 

  143. Wang L, et al. The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation. J Hematol Oncol. 2014;7:61.

    PubMed  PubMed Central  Google Scholar 

  144. DiPersio JF, et al. Immune responses in AML patients following vaccination with GRNVAC1, autologous RNA transfected dendritic cells expressing telomerase catalytic subunit hTERT. Blood. 2009;114(22):633.

    Google Scholar 

  145. Khoury HJ, et al. Prolonged administration of the telomerase vaccine GRNVAC1 is well tolerated and appears to be associated with favorable outcomes in high-risk acute myeloid leukemia (AML). Blood. 2010;116(21):2190.

    Google Scholar 

  146. Chanan-Khan AA, et al. Results of a phase I study of GRN163L, a direct inhibitor of telomerase, in patients with relapsed and refractory multiple myeloma (MM). Blood. 2008;112(11):3688.

    Google Scholar 

  147. Jean-Jacques K, et al. Treatment with imetelstat improves myelofibrosis-related symptoms and other patient-reported outcomes in patients with relapsed or refractory higher-risk myelofibrosis. Blood. 2020;136(1):45–46.

    Google Scholar 

  148. Chiappori AA, et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann Oncol. 2015;26(2):354–62.

    CAS  PubMed  Google Scholar 

  149. Xu Y, Goldkorn A. Telomere and telomerase therapeutics in cancer. Genes (Basel). 2016;7(6):22.

    PubMed  Google Scholar 

  150. Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer. 2019;58(12):850–8.

    CAS  PubMed  Google Scholar 

  151. Graham SM, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25.

    CAS  PubMed  Google Scholar 

  152. Corbin AS, et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121(1):396–409.

    CAS  PubMed  Google Scholar 

  153. Hamilton A, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119(6):1501–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Than H, et al. Coordinated inhibition of nuclear export and Bcr-Abl1 selectively targets chronic myeloid leukemia stem cells. Leukemia. 2020;34(6):1679–83.

    PubMed  PubMed Central  Google Scholar 

  155. Mossner M, et al. Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure. Blood. 2016;128(9):1246–59.

    CAS  PubMed  Google Scholar 

  156. Moran-Crusio K, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lainez-González D, Serrano-López J, Alonso-Domínguez JM. Understanding the hedgehog signaling pathway in acute myeloid leukemia stem cells: a necessary step toward a cure. Biology (Basel). 2021;10(4):255.

    PubMed  Google Scholar 

  158. Naka K. New routes to eradicating chronic myelogenous leukemia stem cells by targeting metabolism. Int J Hematol. 2021;113(5):648–55.

    PubMed  Google Scholar 

  159. Nieborowska-Skorska M, et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood. 2012;119(18):4253–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Walker CJ, et al. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood. 2013;122(17):3034–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Etchin J, et al. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia. 2013;27(1):66–74.

    CAS  PubMed  Google Scholar 

  162. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12):1595–606.

    CAS  PubMed  Google Scholar 

  163. Zanetti C, Krause DS. “Caught in the net”: the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp Hematol. 2020;89:13–25.

    CAS  PubMed  Google Scholar 

  164. Villatoro A, et al. Leukemia stem cell release from the stem cell niche to treat acute myeloid leukemia. Front Cell Dev Biol. 2020;8:607.

    PubMed  PubMed Central  Google Scholar 

  165. Poon Z, et al. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia. 2019;33(6):1487–500.

    PubMed  Google Scholar 

  166. Mumprecht S, et al. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 2009;114(8):1528–36.

    CAS  PubMed  Google Scholar 

  167. Riether C, et al. Blocking programmed cell death 1 in combination with adoptive cytotoxic T-cell transfer eradicates chronic myelogenous leukemia stem cells. Leukemia. 2015;29(8):1781–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Franzini A, et al. The transcriptome of CMML monocytes is highly inflammatory and reflects leukemia-specific and age-related alterations. Blood Adv. 2019;3(20):2949–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zambetti NA, et al. Mesenchymal inflammation drives Genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell. 2016;19(5):613–27.

    CAS  PubMed  Google Scholar 

  170. Ma XY, et al. Recent progress on targeting leukemia stem cells. Drug Discov Today. 2021;26(8):1904–13.

    CAS  PubMed  Google Scholar 

  171. Arnone M, et al. Acute myeloid leukemia stem cells: the challenges of phenotypic heterogeneity. Cancers (Basel). 2020;12(12):3742.

    CAS  PubMed  Google Scholar 

  172. Than H, et al. Ongoing clonal evolution in chronic myelomonocytic leukemia on hypomethylating agents: a computational perspective. Leukemia. 2018;32(9):2049–54.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Y. K. Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hwang, W.Y.K. et al. (2023). Basic Hematopoiesis and Leukemia Stem Cells. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics