Skip to main content

Perception of the Behavior and Performance of Roller-Compacted Concrete (RCC) in the Presence of Different Types of Fly Ash and Similar Cement-Content Admixtures: A Review

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Dam Safety Management and Engineering (ICDSME2023 2023)

Abstract

The need for massive structures such as dams, car parks, and pavements has increased in developing countries, so improving construction materials has become a trend. Since Roller-Compacted Concrete (RCC) is efficient for such projects, it is beneficial to improve it and make it affordable and environmentally friendly. In this review paper, some specific problems of RCC are studied to make the researchers aware of the qualities of RCC and the possible methods to improve RCC by using additives/substitutes like fly ash. Fly ash is inexpensive, readily available, natural, and abundant, so its use has increased in the construction industry, especially in East Asia. Fly ash reduces costs and improves project performance. It is also an environmentally friendly material. Its use as a substitute for cement and aggregates can be environmentally friendly. In this paper, a brief overview of the advantages and disadvantages of RCC is first given after introducing the nature of RCC, including its materials, manufacturing, and transportation methods. Then, the properties of RCC, such as compressive, tensile, and flexural strength, fatigue, absorption, creep, elasticity, resistance to freezing and thawing, erosion, and thermal properties, are discussed. The influence of some cement and aggregate substitutes, such as fly ash, is also described and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madhkhan, M., Azizkhani, R., Harchegani, M.T.: Effects of pozzolans and steel and polypropylene fibres on mechanical properties of RCC pavements. Constr. Build. Mater. 26(1), 102–112 (2012)

    Article  Google Scholar 

  2. Cao, C., Sun, W., Qin, H.: The strength and fly ash effect analysis of roller-compacted concrete with high volume fly ash. Cem. Concr. Res. 30(1), 71–75 (2000)

    Article  Google Scholar 

  3. Atiş, C.D.: Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cem. Concr. Res. 35(6), 1112–1121 (2005)

    Article  Google Scholar 

  4. Hazaree, C., Ceylan, H., Wang, K.: Influences of mixture composition on properties and freeze–thaw resistance of RCC. Constr. Build. Mater. 25(1), 313–319 (2011)

    Article  Google Scholar 

  5. Khunthongkeaw, J., Tangtermsirikul, S.: Vibration consistency prediction model for roller-compacted concrete (RCC). Mater. J. 100(1), 3–13 (2003)

    CAS  Google Scholar 

  6. Shoenberger, J.E.: User's guide: roller-compacted concrete pavement. Army Engineer Waterways Experiment Station Vicksburg Ms Geotechnical Lab (1994)

    Google Scholar 

  7. Tayabji, S.D., Sherman, T.W., Keifer, O., Nanni, A., Piggott, R.W., Pittman, D., Scott, J.A.: State-of-the-art report on roller-compacted concrete pavements (No. ACI325. 10R-95) (1995).

    Google Scholar 

  8. ACI 207.5R-99. Roller compacted mass concrete. ACI Manual of Concrete Practice, Author, 47 (2004)

    Google Scholar 

  9. Andriolo, F.R.: The use of roller compacted concrete. Oficina de textos (1998)

    Google Scholar 

  10. Hansen, K.D., Reinhardt, W.G.: Roller-Compacted Concrete Dams. McGraw-Hill Companies (1991).

    Google Scholar 

  11. Gao, P.W., Wu, S.X., Lin, P.H., Wu, Z.R., Tang, M.S.: The characteristics of air void and frost resistance of RCC with fly ash and expansive agent. Constr. Build. Mater. 20(8), 586–590 (2006)

    Article  Google Scholar 

  12. Yerramala, A., Babu, K.G.: Transport properties of high-volume fly ash roller compacted concrete. Cement Concr. Compos. 33(10), 1057–1062 (2011)

    Article  CAS  Google Scholar 

  13. Fakhri, M.: The effect of waste rubber particles and silica fume on the mechanical properties of roller compacted concrete pavement. J. Clean. Prod. 129, 521–530 (2016)

    Article  CAS  Google Scholar 

  14. Aghaeipour, A., Madhkhan, M.: Mechanical properties and durability of roller compacted concrete pavement (RCCP)–a review. Road Mater. Pavement Des. 21(7), 1775–1798 (2020)

    Article  CAS  Google Scholar 

  15. Modarres, A., Hosseini, Z.: Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material. Mater. Des. 64, 227–236 (2014)

    Article  Google Scholar 

  16. Arent, W.L., Kohn, S., Piggott, R.W., Berry, J.R., Larsen, R.L., Ragan, S.A., Zollinger, D.G.: State of the art report on roller compacted concrete pavements. ACI Mater. J. 91(5), 509–516 (1994)

    Google Scholar 

  17. ACI 325.10. State of art Report on Roller Compacted Concrete Pavements. American Concrete Institute report ACI 325.10-95, R2001

    Google Scholar 

  18. ACI Committee 327. Guide to Roller-Compacted Concrete Pavements. American Concrete Institute (2015).

    Google Scholar 

  19. Tait, B.: Specification and construction of roller compacted concrete pavements. Cement & Concrete Association of New Zealand (1993)

    Google Scholar 

  20. ATİŞ, C.D.: Properties of roller compacted concretes with fly ash. Turk. J. Eng. Environ. Sci. 25(5), 503–516 (2001)

    Google Scholar 

  21. Mehta, P.K., Monteiro, P.J.: Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education (2014)

    Google Scholar 

  22. Neville, A.M.: Properties of Concrete, vol. 4, p. 1995. Longman, London (1995)

    Google Scholar 

  23. Erdogan, T.Y.: Concrete. Middle East Technical University Press, Ankara, Turkey (2003)

    Google Scholar 

  24. Haque, M.N., Langan, B.W., Ward, M.A.: High fly ash concretes. J. Proc. 81(1), 54–60 (1984)

    Google Scholar 

  25. Atiş, C.D.: High-volume fly ash concrete with high strength and low drying shrinkage. J. Mater. Civ. Eng. 15(2), 153–156 (2003)

    Article  Google Scholar 

  26. Ravina, D., Mehta, P.K.: Properties of fresh concrete containing large amounts of fly ash. Cem. Concr. Res. 16(2), 227–238 (1986)

    Article  CAS  Google Scholar 

  27. Ravina, D., Mehta, P.K.: Compressive strength of low cement/high fly ash concrete. Cem. Concr. Res. 18(4), 571–583 (1988)

    Article  CAS  Google Scholar 

  28. Naik, T.R., Ramme, B.W.: High early strength concrete containing large quantities of fly ash. ACI Mater. J. 86(2), 111–116 (1989)

    CAS  Google Scholar 

  29. Poon, C.S., Lam, L., Wong, Y.L.: A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 30(3), 447–455 (2000)

    Article  CAS  Google Scholar 

  30. Bouzoubaa, N., Zhang, M.H., Malhotra, V.M.: Laboratory-produced high-volume fly ash blended cements: compressive strength and resistance to the chloride-ion penetration of concrete. Cem. Concr. Res. 30(7), 1037–1046 (2000)

    Article  CAS  Google Scholar 

  31. Bouzoubaa, N., Zhang, M.H., Malhotra, V.M.: Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cem. Concr. Res. 31(10), 1393–1402 (2001)

    Article  CAS  Google Scholar 

  32. Malhotra, V.M.: Durability of concrete incorporating high-volume of low-calcium (ASTM Class F) fly ash. Cement Concr. Compos. 12(4), 271–277 (1990)

    Article  CAS  Google Scholar 

  33. Siddique, R.: Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 34(3), 487–493 (2004)

    Article  CAS  Google Scholar 

  34. Huang, C.H., Lin, S.K., Chang, C.S., Chen, H.J.: Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 46, 71–78 (2013)

    Article  Google Scholar 

  35. Mardani-Aghabaglou, A., Ramyar, K.: Mechanical properties of high-volume fly ash roller compacted concrete designed by maximum density method. Constr. Build. Mater. 38, 356–364 (2013)

    Article  Google Scholar 

  36. Yazici, Ş, Mardani-Aghabaglou, A., Tuyan, M., Üte, A.A.: Mechanical properties and impact resistance of roller-compacted concrete containing polypropylene fibre. Mag. Concr. Res. 67(16), 867–875 (2015)

    Article  Google Scholar 

  37. Shi, Y., Fang, K.H.: Strength of roller compacted concrete. In: Key Engineering Materials, vol. 302, pp. 508–513. Trans Tech Publications Ltd (2006)

    Google Scholar 

  38. Ge, X.L., Fang, K.H., Zeng, L.: Studies on materials of RCC dam in China. China Water Resour. 21, 10–12 (2007)

    Google Scholar 

  39. Liu, D.M.: Research on properties of roller compacted concrete with high contents of fly ash. J. China Three Gorges Univ. 4, 51–54 (2012)

    Google Scholar 

  40. Piggott, R.W.: Roller-compacted concrete pavements: a study of long-term performance. Portland Cement Association (1999)

    Google Scholar 

  41. ACI Committee 325.10 Report. State-of-the-Art Report on Roller Compacted Concrete Pavements, ACI Manual of Concrete Practice (1995)

    Google Scholar 

  42. Dunstan, M.R.H.: Recent developments in roller compacted concrete dam construction. Water Power & Dam Construction Handbook, pp. 39–47 (1989)

    Google Scholar 

  43. Schrader, E.K.: Roller compacted concrete for dams: the state-of-the art. In: Malhotra, V.M. (Ed.) Advances in Concrete Technology, pp. 361–406. CANMET, Ottawa, Canada (1992)

    Google Scholar 

  44. Marchand, J., Gagne, R., Ouellet, E., Lepage, S.: Mixture proportioning of roller compacted concrete. A Review, Concrete Technology Special Publication SP, pp. 171–22 (1997)

    Google Scholar 

  45. Gagné, R.: Mixture Proportioning of Non-Air-Entrained RCC for Pavements. Concr. Int. 21(5) (1999)

    Google Scholar 

  46. Lam, M.N.T., Le, D.H., Jaritngam, S.: Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash. Constr. Build. Mater. 191, 912–922 (2018)

    Article  CAS  Google Scholar 

  47. Burwell, B.O., Byers, M., Delatte, N., Edwards, J., Friess, S.: Roller-Compacted Concrete Pavements as Exposed Wearing Surface (2014)

    Google Scholar 

  48. Wang, L., Zhang, G., Wang, P., Yu, S.: Effects of fly ash and crystalline additive on mechanical properties of two-graded roller compacted concrete in a high RCC arch dam. Constr. Build. Mater. 182, 682–690 (2018)

    Article  Google Scholar 

  49. Atiş, C.D., Sevim, U.K., Özcan, F., Bilim, C., Karahan, O.K.A.N., Tanrikulu, A.H., Ekşi, A.: Strength properties of roller compacted concrete containing a non-standard high calcium fly ash. Mater. Lett. 58(9), 1446–1450 (2004)

    Article  Google Scholar 

  50. Lam, N.T.M., Nguyen, D.L., Le, D.H.: Predicting compressive strength of roller-compacted concrete pavement containing steel slag aggregate and fly ash. Int. J. Pavement Eng. 23(3), 731–744 (2022)

    Article  CAS  Google Scholar 

  51. Eldin, N.N., Senouci, A.B.: Rubber-tire particles as concrete aggregate. J. Mater. Civ. Eng. 5(4), 478–496 (1993)

    Article  CAS  Google Scholar 

  52. Fattuhi, N.I., Clark, L.A.: Cement-based materials containing shredded scrap truck tyre rubber. Constr. Build. Mater. 10(4), 229–236 (1996)

    Article  Google Scholar 

  53. Raghavan, D., Huynh, H., Ferraris, C.F.: Workability, mechanical properties, and chemical stability of a recycled tyre rubber-filled cement composite. J. Mater. Sci. 33(7), 1745–1752 (1998)

    Article  CAS  Google Scholar 

  54. Ganjian, E., Khorami, M., Maghsoudi, A.A.: Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr. Build. Mater. 23(5), 1828–1836 (2009)

    Article  Google Scholar 

  55. Thiruppathi, R.: Discarded tyre rubber as concrete aggregate: a possible outlet for used tyres. In: 2013 International Conference on Current Trends in Engineering and Technology (ICCTET), pp. 202–207. IEEE (2013)‏

    Google Scholar 

  56. Benazzouk, A., Douzane, O., Langlet, T., Mezreb, K., Roucoult, J.M., Quéneudec, M.: Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cement Concr. Compos. 29(10), 732–740 (2007)

    Article  CAS  Google Scholar 

  57. Aiello, M.A., Leuzzi, F.: Waste tyre rubberized concrete: properties at fresh and hardened state. Waste Manage. 30(8–9), 1696–1704 (2010)

    Article  CAS  Google Scholar 

  58. Al-Akhras, N.M., Smadi, M.M.: Properties of tire rubber ash mortar. Cement Concr. Compos. 26(7), 821–826 (2004)

    Article  CAS  Google Scholar 

  59. da Silva, F.M., Barbosa, L.A.G., Lintz, R.C.C., Jacintho, A.E.P.: Investigation on the properties of concrete tactile paving blocks made with recycled tire rubber. Constr. Build. Mater. 91, 71–79 (2015)

    Article  Google Scholar 

  60. Lv, J., Zhou, T., Du, Q., Wu, H.: Effects of rubber particles on mechanical properties of lightweight aggregate concrete. Constr. Build. Mater. 91, 145–149 (2015)

    Article  Google Scholar 

  61. Moustafa, A., ElGawady, M.A.: Mechanical properties of high strength concrete with scrap tire rubber. Constr. Build. Mater. 93, 249–256 (2015)

    Article  Google Scholar 

  62. Rooholamini, H., Sedghi, R., Ghobadipour, B., Adresi, M.: Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete. Constr. Build. Mater. 211, 88–98 (2019)

    Article  Google Scholar 

  63. Rao, S.K., Sravana, P., Rao, T.C.: Abrasion resistance and mechanical properties of roller compacted concrete with GGBS. Constr. Build. Mater. 114, 925–933 (2016)

    Article  CAS  Google Scholar 

  64. Fakhri, M., Amoosoltani, E.: The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement. Construction and Building Materials, 137, 470–484 (2017). Khatib, J., Jahami, A., El Kordi, A., Sonebi, M., Malek, Z., Elchamaa, R., Dakkour, S.: Effect of municipal solid waste incineration bottom ash (MSWI-BA) on the structural performance of reinforced concrete (RC) beams. J. Eng. Des. Technol. (2021)

    Google Scholar 

  65. Fakhri, M., Amoosoltani, E., Aliha, M.R.M.: Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber. Eng. Fract. Mech. 180, 43–59 (2017)

    Article  Google Scholar 

  66. Albuquerque, M.C., Balbo, J.T., Sansone, E.C., Pinto, P.C.: Fracture characterization of roller compacted concrete mixtures with blast furnace slag and industrial sand. Int. J. Pavement Res. Technol. 4(4), 244 (2011)

    Google Scholar 

  67. Jaafar, M.S., Noorzaei, J., Abdulrazeg, A.A., Mohammed, T.A., Khanehzaei, P.: A spatial FEM model of thermal and mechanical action in RCC dam. Struct. Longevity 5(3), 147–155 (2011)

    Google Scholar 

  68. Li, Q., Zhang, F., Zhang, W., Yang, L.: Fracture and tension properties of roller compacted concrete cores in uniaxial tension. J. Mater. Civ. Eng. 14(5), 366–373 (2002)

    Article  CAS  Google Scholar 

  69. Engineers, U. A. C. O. Roller-compacted concrete. EM 1110-2-2006, Department of the Army, Washington, DC 15 January (2000)

    Google Scholar 

  70. Berga, L., Buil, J.M., Jofré, C., Chonggang, S. (eds.): RCC Dams-Roller Compacted Concrete Dams: Proceedings of the IV International Symposium on Roller Compacted Concrete Dams, Madrid, Spain, 17–19 November 2003–2 Volume set. CRC Press (2003)

    Google Scholar 

  71. Abdulrazeg, A.A., Noorzaei, J., Khanehzaei, P., Jaafar, M.S., Mohammed, T.A.: Effect of temperature and creep on roller compacted concrete dam during the construction stages. Comput. Model. Eng. Sci. (CMES) 68(3), 239 (2010)

    Google Scholar 

  72. Adamu, M., Mohammed, B.S., Liew, M.S.: Effect of crumb rubber and Nano silica on the creep and drying shrinkage of roller compacted concrete pavement. GEOMATE J. 15(47), 58–65 (2018)

    Google Scholar 

  73. Abu-Khashaba, M.I., Adam, I., El-Ashaal, A.: Investigating the possibility of constructing low-cost roller compacted concrete dam. Alex. Eng. J. 53(1), 131–142 (2014)

    Article  Google Scholar 

  74. Rao, S.K., Sravana, P., Rao, T.C.: Investigation on pozzolonic effect of fly ash in roller compacted concrete pavement. IRACST-Eng. Sci. Technol. Int. J. (ESTIJ) 5(2), 202–206 (2015)

    Google Scholar 

  75. Rao, S.K., Sravana, P., Rao, T.C.: Strength and compaction characteristics of fly ash roller compacted concrete. Int. J. Sci. Res. Knowl. 3(10), 0260–0269 (2015)

    CAS  Google Scholar 

  76. Rao, S.K., Sravana, P., Rao, T.C.: Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand. Int. J. Pavement Res. Technol. 9(4), 289–301 (2016)

    Article  Google Scholar 

  77. Rao, S.K., Sravana, P., Rao, T.C.: Investigating the effect of M-sand on abrasion resistance of Fly Ash Roller Compacted Concrete (FRCC). Constr. Build. Mater. 118, 352–363 (2016)

    Article  Google Scholar 

  78. Rao, S.K., Sravana, P., Rao, T.C.: Investigating the effect of M-sand on abrasion resistance of roller compacted concrete containing GGBS. Constr. Build. Mater. 122, 191–201 (2016)

    Article  CAS  Google Scholar 

  79. Rao, M., Yang, H., Lin, Y., Li, J., Shi, Y.: Influence of maximum aggregate sizes on the performance of RCC. Constr. Build. Mater. 115, 42–47 (2016)

    Article  CAS  Google Scholar 

  80. Xin, W., Luo, S.Z., Hu, Y.A., Qiang, Y.U.A.N., Wang, H.S., Zhao, L.H.: High-speed flow erosion on a new roller compacted concrete dam during construction. J. Hydrodyn. Ser. B 24(1), 32–38 (2012)

    Google Scholar 

  81. Banthia, N., Pigeon, M., Marchand, J., Boisvert, J.: Permeability of roller compacted concrete. J. Mater. Civ. Eng. 4(1), 27–40 (1992)

    Article  CAS  Google Scholar 

  82. Chi, M., Huang, R.: Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete. Cement Concr. Compos. 45, 148–156 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hafez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hafez, M. et al. (2023). Perception of the Behavior and Performance of Roller-Compacted Concrete (RCC) in the Presence of Different Types of Fly Ash and Similar Cement-Content Admixtures: A Review. In: Mohd Sidek, L., Salih, G.H.A., Ahmed, A.N., Escuder-Bueno, I., Basri, H. (eds) Proceedings of the 2nd International Conference on Dam Safety Management and Engineering. ICDSME2023 2023. Water Resources Development and Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-3708-0_2

Download citation

Publish with us

Policies and ethics