Skip to main content

MOF: A New Age Smart Material as Nano Carriers for Fertilizers and Pesticides

  • Chapter
  • First Online:
Biological Applications of Nanoparticles

Abstract

Agrochemicals such as fertilizers and pesticides are very important elements in crop production. Engineered nanomaterials offer very advanced results in agriculture, exploring the properties of nano dimension. Controlled-release fertilizers and pesticides provide a new method to solve low nutrient utilization rates and prevent environmental pollution and non-target risks. Metal organic frameworks (MOFs) are porous materials constructed by the formation of covalent bonds between metal nodes or clusters and functional organic ligands. Owing to their inherent advantages, such as crystalline ordered structures, high surface area, high porosity, outer surface modification, and tuneable pore channels. MOFs have attracted much interest, offering numerous potential applications in diverse fields. MOFs are well-established materials for drug delivery and other biomedical applications. Recently, MOF- based materials have also been used as nanocarriers for slow release of fertilizers and pesticide. The applications of several MOF structures and their derivatives as nanocarriers of fertilizers and pesticides will be highlighted in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhameed RM, Abdelhameed RE, Kamel HA (2019) Mater Lett 237:72–79

    Article  CAS  Google Scholar 

  • Alp EE, Mini SM, Ramanathan M (1990) X-ray absorption spectroscopy: EXAFS and XANES-A versatile tool to study the atomic and electronic structure of materials. In: Schulze D, Anderson S, Mattigod S (eds) Synchrotron X-ray sources and new opportunities in the soil and environmental sciences. Argonne National Lab, Lemont, IL, pp 25–36

    Google Scholar 

  • Anstoetz M, Sharma N, Clark M, Yee LH (2016) J Mater Sci 51:9239–9252

    Article  CAS  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. In: Zinc biochemistry, physiology, and homeostasis. Springer, Berlin, pp 85–127

    Chapter  Google Scholar 

  • Bedia J, Muelas-Ramos V, Peñas-Garzón M, Gómez-Avilés A, Rodríguez JJ, Belver C (2019) A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 9:52

    Article  Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  • Butova V et al (2016) Russ Chem Rev 85:280–307

    Article  CAS  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Petter Lillerud K (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  PubMed  Google Scholar 

  • Certini G, Corti G, Ugolini FC (2000) J Plant Nutr Soil Sci 163:173–177

    Article  CAS  Google Scholar 

  • Chalati T, Horcajada P, Gref R, Couvreura P, Serreb C (2011) Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J Mater Chem 21:2220–2227

    Article  CAS  Google Scholar 

  • Copping LG (2009) Outlooks Pest Manage 20:6–7

    Article  Google Scholar 

  • Datnoff L, Elmer W, Huber DM (2007) Mineral nutrition and plant disease. American Phytopathological Society, APS Press, St Paul, p 278

    Google Scholar 

  • Denysenko D, Grzywa M et al (2011) Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal–organic frameworks featuring different pore sizes. Chem A Eur J 17:1837–1848

    Article  CAS  Google Scholar 

  • Dimkpa C, Singh U, Adisa I, Bindraban P, Elmer W, Gardea-Torresdey J, White J (2018) Triticum aestivum L. Agronomy 8:158

    Article  CAS  Google Scholar 

  • Esquivel-Castro TA, Ibarra-Alonso MC, Oliva J, Martínez-Luévanos A (2019) Mater Sci Eng C 96:915–940

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Adv Agron 77:185–268

    Article  CAS  Google Scholar 

  • Fahad S, Ahmad KM, Anjum MA, Hussain S (2014) J Agric Sci Technol 16:1671–1682

    Google Scholar 

  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  PubMed  Google Scholar 

  • Hafizovic J et al (2007) J Am Chem Soc 129:3612

    Article  CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  Google Scholar 

  • Hartmann M, Kunz S, Himsl D, Tangermann O, Ernst S, Wagener A (2008) Langmuir 24:8634–8642

    Article  CAS  PubMed  Google Scholar 

  • Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, Matthews, NC

    Google Scholar 

  • Hewitt E, Bolle-Jones E (1952) J Hortic Sci 27:257–265

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station. p 347

    Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  CAS  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016) Agric Sloven 107:265–276

    Google Scholar 

  • Jin Son W, Kim J, Kim J, Seung Ahn W (2008) Chem Commun:6336–6338

    Google Scholar 

  • Kaiser BN, Ngaire JB, Gridley KL, Tyerman SD, Phillips T (2005) Ann Bot 96:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khazalpour S, Safarifard V, Morsali A, Nematollahi D (2015) RSC Adv 5:36547

    Article  CAS  Google Scholar 

  • Kizewski FR, Boyle P, Hesterberg D, Martin JD (2010) J Am Chem Soc 132:2301–2308

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Jing F, Shen L, Qin N, Wu L (2015) Nano Res 8:3237–3249

    Article  CAS  Google Scholar 

  • Liu C, Wang P, Liu X, Yi X, Zhou Z, Liu D (2019) ACS Sustain Chem Eng 7(17):14479–14489

    Article  CAS  Google Scholar 

  • Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, Kapteijn F, Gascon J (2012) Cryst Growth Des 12:3489–3498

    Article  CAS  Google Scholar 

  • Meng W, Tian Z, Yao P, Fang X, Wu T, Cheng J, Zou A (2020) Colloids Surf A Physicochem Eng Asp 604:125266

    Article  CAS  Google Scholar 

  • Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndta K, Pastréa J (2006) J Mater Chem 16:626–636

    Article  CAS  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Namdeo Pudake R, Chauhan N, Kole C (2019) Nanoscience for sustainable agriculture. ISBN: 978–3–319-97852-9

    Google Scholar 

  • Ni Z, Masel RI (2006) J Am Chem Soc 128:12394–12395

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Mahmudur Rahman M, Liu Y, Naidu R (2016) J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Pichon A et al (2006) CrstEngComm 8:211–214

    Article  CAS  Google Scholar 

  • Qin J, Wang X, Wang S (2017) Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient CO-catalyst. Appl Catal Environ 209:476–482

    Article  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  PubMed  Google Scholar 

  • Scott N, Chen H, Rutzke CJ (2002) Nanoscale science and engineering for agriculture and food systems: a report submitted to cooperative state research, education and extension service, U.S. Department of Agriculture: National Planning Workshop, Nov 18−19, Washington, DC, USA

    Google Scholar 

  • Shan Y, Cao L, Muhammad B, Xub B, Zhao P, Cao C, Huang Q (2020) J Colloid Interface Sci 566:383–393

    Article  CAS  PubMed  Google Scholar 

  • Stappers J, Denayer FM, Binnemans K, De Vos DE, Fransaer J (2014) ECS Trans 61:25–40

    Google Scholar 

  • Stewart WM, Dibb DW, Johnston AE, Smyth TJ (2005) The contribution of commercial fertilizer nutrients to food production. Agron J 97:1–6

    Article  Google Scholar 

  • Stock N, Biswas S (2012) Chem Rev 112:933–969

    Article  CAS  PubMed  Google Scholar 

  • Stumm W, Morgan JJ (1995) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, Weinheim

    Google Scholar 

  • Suslick KS, Burm CS, Cichowlas AA, Grinstaff MW (1991) Nature 353:414

    Article  CAS  Google Scholar 

  • Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chemie-Ingenieur-Technik 82:1059–1073

    Article  CAS  Google Scholar 

  • Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Tetrahedron 64:8553–8557

    Article  CAS  Google Scholar 

  • van den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, Smelt JH, van der Linden AMA (1999) Emission of pesticides into the air. Water Air Soil Pollut 115:195–218

    Article  Google Scholar 

  • Wei Z (2014) New design and synthetic strategies of metal-organic frameworks. PhD Thesis, Texas A&M University, College Station, TX, USA

    Google Scholar 

  • Welch RM, Shuman L (1995) Crit Rev Plant Sci 14:49–82

    Article  CAS  Google Scholar 

  • Welch RM et al (1995) Crit Rev Plant Sci 14:49–82

    Article  CAS  Google Scholar 

  • Williams R, Da Silva JF (2002) The involvement of molybdenum in life. Biochem Biophys Res Commun 292:293–299

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Du C, Ma F, Shen Y, Liang D, Zhou J (2019) Polymers 11:947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Dan Y, Ian D, Zheng Y, Wei S, Xiang D (2020) Int J Biol Macromol 145:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Trickett CA, Alahmadi SB, Alshammari AS, Yaghi OM (2017) Calcium Llactate frameworks as naturally degradable carriers for pesticides. J Am Chem Soc 139:8118–8121

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Lazuen Garay A, Pichon A, Clowes R, Wood CD, Cooper AI, James SL (2010a) CrstEngComm 12:4063–4065

    Article  CAS  Google Scholar 

  • Yuan W et al (2010b) Chem Commun 46:7572–7574

    Article  Google Scholar 

  • Zhang Q, Zhu Y, Jin H, Huang Y (2017) Chem Commun 53:3974–3977

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Chakrabarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basak, S., Bhattacharyya, P., Lokhande, P.E., Chakrabarti, S. (2023). MOF: A New Age Smart Material as Nano Carriers for Fertilizers and Pesticides. In: Sarkar, B., Sonawane, A. (eds) Biological Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-99-3629-8_8

Download citation

Publish with us

Policies and ethics