Skip to main content

Modeling of Nanorobots and Its Application Toward Medical Technology

  • Chapter
  • First Online:
Biological Applications of Nanoparticles

Abstract

Recent advances in the development of micro and nanosensors have led researchers to develop nanorobots (nanobots) that would be able to detect and deliver drugs to defective cells. These nanorobots include sensors to detect defective cells or tissues and can be easily programmed for the detection and treatment of various important diseases like cancer. Here we discuss some recent advancement of nanobots in biomedicine field with particular emphasis on targeted drug delivery, sensing of biologic targets, detoxification, and precision surgery using nanorobots, locomotion, and power supply requirements of bio-nanorobots. The future success of bio-nanorobot technology can be achieved through close collaboration between nanotechnology, robotics, and biomedical experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmohsen LK, Peng F, Tu Y, Wilson DA (2014) Micro-and nano-motors for biomedical applications. J Mater Chem B 2(17):2395–2408

    Article  CAS  PubMed  Google Scholar 

  • Berger M (2016) Nanotechnology: the future is tiny, 1st edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Breger JC, Yoon C, Xiao R, Rin KH, Wang MO, Fisher JP, Nguyen TD, Gracias DH (2015) Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces 7:3398–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalcanti A (2003) Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Trans Nanotechnol 2(2):82

    Article  Google Scholar 

  • Cavalcanti A, Shirinzadeh B, Freitas RA, Hogg T (2007) Nanorobot architecture for medical target identification. Nanotechnology 19(1):015103

    Article  Google Scholar 

  • Chaniotakis N, Fouskaki M (2014) Bio-chem-FETs: field effect transistors for biological sensing. In: Biological identification. Woodhead Publishing, Sawston, pp 194–219

    Chapter  Google Scholar 

  • Chen Y, Nakano T, Kosmas P, Yuen C, Vasilakos AV, Asvial M (2016) Green touchable nanorobotic sensor networks. IEEE Commun Mag 54(11):136–142

    Article  Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford, pp 1–55

    Book  Google Scholar 

  • Duan W, Wang W, Das S, Yadav V, Mallouk TE, Sen A (2015) Synthetic nano-and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu Rev Anal Chem 8:311–333

    Article  Google Scholar 

  • Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Xu YZ, Loghin D, Essa S, Jancik S, Houle D, Lafleur M, Gaboury L (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 11(11):941–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J (2013) Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10):9232–9240

    Article  CAS  PubMed  Google Scholar 

  • Guix M, Mayorga-Martinez CC, Merkoçi A (2014) Nano/micromotors in (bio) chemical science applications. Chem Rev 114(12):6285–6322

    Article  CAS  PubMed  Google Scholar 

  • Hamdi M, Ferreira A (2007) Multiscale design and modeling of nanorobots. In: Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems, San Diego, 29 Oct–2 Nov.

    Google Scholar 

  • Kim K, Guo J, Xu X, Fan DL (2015) Recent progress on man-made inorganic nanomachines. Small 11(33):4037–4057

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Zhao Y, Thomas G, Fernandez BR, Sentis L (2022) Stabilizing series-elastic point-foot bipeds using whole-body operational space control. IEEE Trans Robot 32(6):1362–1379

    Article  Google Scholar 

  • Leong TG, Randall CL, Benson BR, Bassik N, Sterna GM, Gracias DH (2009) Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci U S A 106:703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, de Ávila Berta EF, Gao W, Zhang L, Wang J (2017) Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot 2(14):eaam6431

    Article  PubMed  PubMed Central  Google Scholar 

  • Lida N (1978) Influence of plasma layer on steady blood flow in micro vessels. Jpn J Appl Phys 17:203–214

    Article  Google Scholar 

  • Lin X, Wu Z, Wu Y, Xuan M, He Q (2016) Self-propelled micro−/nanomotors based on controlled assembled architectures. Adv Mater 28:1060–1072

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Hoshino T, Akiyama Y, Morishima K (2010) Magnetically control of nano-structures for intracellular nano-robots. In: 2010 International symposium on micro-NanoMechatronics and human science, pp 109–114

    Chapter  Google Scholar 

  • Mei Y, Solovev AA, Sanchez S, Schmidt OG (2011) Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev 40(5):2109–2119

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SM, Hashemi SA, Zarei M, Amani AM, Babapoor A (2018) Nanosensors for chemical and biological and medical applications. Med Chem (Los Angeles) 8(8):205–217

    Article  Google Scholar 

  • Palagi S, Mark AG, Reigh SY, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N, Giesselmann F (2016) Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater 15(6):647–653

    Article  CAS  PubMed  Google Scholar 

  • Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Purcell EM (1976) Life at low Reynolds number. Am J Phys 45:3–11

    Article  Google Scholar 

  • Rajesh J, Pavithra G, Manjunath TC (2018) Design & development of nanobots for cancer cure applications in bio-medical engineering. Int J Eng Res Technol 6(13):1–7

    Google Scholar 

  • Rolfe P (2012) Micro- and nanosensors for medical and biological measurement. Sens Mater 24(6):275–302

    CAS  Google Scholar 

  • Sánchez S, Soler L, Katuri J (2015) Chemically powered micro-and nanomotors. Angew Chem Int Ed Engl 54(5):1414–1444

    Article  PubMed  Google Scholar 

  • Servant A, Qiu F, Mazza M, Kostarelos K, Nelson BJ (2015) Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater 27(19):2981–2988

    Article  CAS  PubMed  Google Scholar 

  • Trihirun S, Achalakul T, Kaewkamnerdpong B (2013) Modeling nanorobot control for blood vessel repair: a non-Newtonian blood model. In: The 6th 2013 biomedical engineering international conference, pp 1–5

    Google Scholar 

  • Urban GA (2009) Micro-and nanosensors for medical applications. In: World congress on medical physics and biomedical engineering, Munich, 7–12 Sept 2009. Springer, Berlin, p 310

    Google Scholar 

  • Vikram Singh A, Sitti M (2016) Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des 22(11):1418–1428

    Article  Google Scholar 

  • Wang J (2013) Nanomachines: fundamentals and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Wang H, Pumera M (2015) Fabrication of micro/nanoscale motors. Chem Rev 115(16):8704–8735

    Article  CAS  PubMed  Google Scholar 

  • Warkentin TE (2009) Thrombocytopenia due to platelet destruction and hypersplenism in hematology: basic principles and practice, 5th edn. Churchill Livingstone Elsevier, Philadelphia, pp 2113–2131

    Google Scholar 

  • Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52:7000–7003

    Article  CAS  Google Scholar 

  • Xu J (2013) Motion simulation of an artificial flagellum nanorobot. In: Proceedings of the 13th IEEE international conference on nanotechnology, Beijing, 5–8 Aug 2013

    Google Scholar 

  • Xu T, Li-Ping X, Zhang X (2017) Ultrasound propulsion of micro /nanomotor. Appl Mater Today 9:493–503

    Article  Google Scholar 

  • Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, O’Connor BT, Zhu Y (2020) Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 32(15):e1902343

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koena Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, K., Sharma, A.K. (2023). Modeling of Nanorobots and Its Application Toward Medical Technology. In: Sarkar, B., Sonawane, A. (eds) Biological Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-99-3629-8_4

Download citation

Publish with us

Policies and ethics