Skip to main content

A Deep Learning Framework for the Classification of Pre-prodromal and Prodromal Alzheimer’s Disease Using Resting-State EEG Signals

  • Chapter
  • First Online:
Applications of Artificial Intelligence and Neural Systems to Data Science

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 360))

  • 326 Accesses

Abstract

Alzheimer’s Disease (AD) is a neurodegenerative disease that today represents the most common form of dementia in the elderly. The costs associated with the treatment of AD patients alone have tripled in less than twenty years, pointing out the problem of managing diagnosis and treatment and highlighting the need for effective therapeutic interventions. The identification of cases of AD in its preclinical phase, through an early diagnosis already in its asymptomatic stages, could allow more appropriate treatment options and better overall management of the disease. In this work, we designed and developed a Deep Learning (DL) algorithm for the classification of patients with Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI) starting from the EEG signal, with the aim of early diagnosing the course of Alzheimer’s Disease in its initial manifestations. EEG recordings of 35 SCD subjects and 32 MCI patients have been acquired at resting state. After preprocessing, a graphical representation of the input data has been generated splitting the EEG signal into non-overlapping epochs of 5 s and applying a Continuous Wavelet Transform (CWT). The images have been used to train and test a DL model, based on the ResNet-18 architecture coupled with a Recurrent Neural Network, to classify the input temporal sequence. The performance of the model has been evaluated in terms of Accuracy, Sensitivity, and Specificity, with results of 75.0%, 66.7%, and 81.8%, respectively. The implemented method and relative performances demonstrate the effectiveness of the proposed approach for the identification of SCD and MCI, through biomarkers obtainable from minimally invasive diagnostic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Disease Association: 2021 Alzheimer’s Disease Facts and Figures. (2021). https://doi.org/10.1002/alz.12328.

  2. Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M., Karagiannidou, M.: World Alzheimer Report 2016 Improving healthcare for people living with dementia. Coverage, Quality and costs now and in the future. Alzheimer’s Disease International (ADI). (2016)

    Google Scholar 

  3. Rabin, L.A., Smart, C.M., Amariglio, R.E.: Subjective cognitive decline in preclinical alzheimer’s disease. Annu. Rev. Clin. Psychol. 13, 369–396 (2017). https://doi.org/10.1146/annurev-clinpsy-032816-045136

    Article  Google Scholar 

  4. Hyman, B.T., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Carrillo, M.C., Dickson, D.W., Duyckaerts, C., Frosch, M.P., Masliah, E., Mirra, S.S., Nelson, P.T., Schneider, J.A., Thal, D.R., Thies, B., Trojanowski, J.Q., Vinters, H.V., Montine, T.J.: National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13 (2012). https://doi.org/10.1016/j.jalz.2011.10.007

    Article  Google Scholar 

  5. Teipel, S.J., Grothe, M., Lista, S., Toschi, N., Garaci, F.G., Hampel, H.: Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer Disease. Med. Clin. North Am. 97, 399–424 (2013). https://doi.org/10.1016/j.mcna.2012.12.013

    Article  Google Scholar 

  6. Sun, Y., Yang, F.-C., Lin, C.-P., Han, Y., Ching-Po Lin, C.: Biochemical and neuroimaging studies in subjective cognitive decline: progress and perspectives. https://doi.org/10.1111/cns.12395.

  7. Jessen, F., Amariglio, R.E., Boxtel, M. Van, Breteler, M., Dubois, B., Dufouil, C., Ellis, K.A., Flier, W.M. Van Der, Glodzik, L., Harten, A.C. Van, Leon, M.J. De, Mchugh, P., Mielke, M.M., Luis, J., Mosconi, L., Osorio, R.S., Perrotin, A., Petersen, R.C., Rabin, L.A., Rami, L., Reisberg, B., Rentz, D.M., Sachdev, P.S., De, V., Saykin, A.J., Scheltens, P., Shulman, M.B., Slavin, M.J., Sperling, R.A., Stewart, R., Uspenskaya, O., Vellas, B., Jelle, P., Wagner, M., Cognitive, S., Initiative, D., Group, S.W.: A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer ’ s disease. 10, 844–852 (2014). https://doi.org/10.1016/j.jalz.2014.01.001.

  8. Cassani, R., Estarellas, M., San-Martin, R., Fraga, F.J., Falk, T.H.: Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Dis Markers. 2018, (2018). https://doi.org/10.1155/2018/5174815.

  9. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: A systematic review. J. Neural. Eng. 16, ab260c (2019). https://doi.org/10.1088/1741-2552/ab260c

  10. Komori, S., Cross, D.J., Mills, M., Ouchi, Y., Nishizawa, S., Okada, H., Norikane, T., Thientunyakit, T., Anzai, Y., Minoshima, S.: Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging. Ann. Nucl. Med. (2022). https://doi.org/10.1007/S12149-022-01775-Z

    Article  Google Scholar 

  11. Dai, Y., Qiu, D., Wang, Y., Dong, S., Wang, H.L.: Research on computer-aided diagnosis of Alzheimer’s Disease based on heterogeneous medical data fusion. Intern. J. Pattern Recognit. Artif. Intell. 33 (2019). https://doi.org/10.1142/S0218001419570015.

  12. Kam, T.E., Zhang, H., Shen, D.: A novel deep learning framework on brain functional networks for early MCI diagnosis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11072 LNCS, 293–301 (2018). https://doi.org/10.1007/978-3-030-00931-1_34.

  13. Morabito, F.C., Campolo, M., Ieracitano, C., Ebadi, J.M., Bonanno, L., Bramanti, A., Desalvo, S., Mammone, N., Bramanti, P.: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI). pp. 1–6 (2016). https://doi.org/10.1109/RTSI.2016.7740576

  14. Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., Morabito, F.C.: A Convolutional Neural Network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 323, 96–107 (2019). https://doi.org/10.1016/j.neucom.2018.09.071

    Article  Google Scholar 

  15. Kim, D., Kim, K.: Detection of Early Stage Alzheimer’s Disease using EEG Relative Power with Deep Neural Network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 352–355 (2018). https://doi.org/10.1109/EMBC.2018.8512231.

  16. Huggins, C.J., Escudero, J., Parra, M.A., Scally, B., Anghinah, R., Vitória Lacerda De Araújo, A., Basile, L.F., Abasolo, D.: Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer’s disease, mild cognitive impairment and healthy ageing. J Neural Eng. 18, (2021). https://doi.org/10.1088/1741-2552/ac05d8.

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2012 AlexNet. Adv. Neural. Inf. Process Syst. (2012). https://doi.org/10.1016/j.protcy.2014.09.007

    Article  Google Scholar 

  18. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., Robbins, K.A.: The PREP pipeline: standardized preprocessing for large-scale EEG analysis (2015). https://doi.org/10.3389/fninf.2015.00016

    Article  Google Scholar 

  19. Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S.: ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 198, 181–197 (2019). https://doi.org/10.1016/j.neuroimage.2019.05.026

    Article  Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-Decem, 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90.

  21. Ioulietta, L., Kostas, G., Spiros, N., Vangelis, O.P., Anthoula, T., Ioannis, K., Magda, T., Dimitris, K.: A Novel Connectome-based Electrophysiological Study of Subjective Cognitive Decline Related to Alzheimer’s Disease by Using Resting-state High-density EEG EGI GES 300. Brain Sci. 392 (2020). https://doi.org/10.3390/brainsci10060392.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Sibilano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sibilano, E., Lassi, M., Mazzoni, A., Bevilacqua, V., Brunetti, A. (2023). A Deep Learning Framework for the Classification of Pre-prodromal and Prodromal Alzheimer’s Disease Using Resting-State EEG Signals. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds) Applications of Artificial Intelligence and Neural Systems to Data Science. Smart Innovation, Systems and Technologies, vol 360. Springer, Singapore. https://doi.org/10.1007/978-981-99-3592-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3592-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3591-8

  • Online ISBN: 978-981-99-3592-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics