Skip to main content

Introduction

  • Chapter
  • First Online:
E-Commerce Big Data Mining and Analytics

Part of the book series: Advanced Studies in E-Commerce ((ASEC))

  • 371 Accesses

Abstract

Business intelligence is a collection of software, technologies, and methods to discover valuable laws and patterns from data, transform data into knowledge, and support enterprises’ decision making, marketing, and services (Chen et al. in Principles and methods of business intelligence, 2nd edn. Electronics Industry Press, Beijing, 2014 [1]). With the rapid development of big data, e-commerce is gradually transitioning to the era of big data, i.e., the new generation of e-commerce. According to eMarketer, a leading global market research firm, global e-commerce sales will be $4.938 trillion in 2021, and according to its forecast predicts that global e-commerce sales will reach $5.542 trillion in 2022, accounting for more than one-fifth of total retail sales. Such rapid growth brings broad prospects for the development of a new generation of e-commerce industry, which means a strong market and broad user demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen G, Wei Q, Zhang J (2014) Principles and methods of business intelligence, 2nd edn. Electronics Industry Press, Beijing (in Chinese)

    Google Scholar 

  2. Feng Z, Guo X, Zeng D et al (2013) On the research frontiers of business management in the context of big data. J Manage Sci China 16(1):1–9 (in Chinese)

    Google Scholar 

  3. Chaudhuri S, Dayal U, Narasayya V (2011) An overview of business intelligence technology. Commun ACM 54(8):88–98

    Article  Google Scholar 

  4. Meng X, Du Z (2016) Research on the big data fusion: issues and challenges. Comput Res Dev 53(2):231–246 (in Chinese)

    Google Scholar 

  5. Ding W, Jing X, Yan Z et al (2019) A survey on data fusion in internet of things: towards secure and privacy-preserving fusion. Inf Fus 51:129–144

    Article  Google Scholar 

  6. Pansiot J, Stoyanov D, McIlwraith D et al (2007) Ambient and wearable sensor fusion for activity recognition in healthcare monitoring systems. In: 4th international workshop on wearable and implantable body sensor networks, pp 208–212

    Google Scholar 

  7. Panigrahi S, Kundu A, Sural S et al (2009) Credit card fraud detection: a fusion approach using Dempster–Shafer theory and Bayesian learning. Inf Fus 10(4):354–363

    Article  Google Scholar 

  8. Murphy RR (1998) Dempster–Shafer theory for sensor fusion in autonomous mobile robots. IEEE Trans Robot Autom 14(2):197–206

    Article  Google Scholar 

  9. Maedche A, Staab S (2002) Ontology learning for the semantic web. Springer Nature, Switzerland AG

    Google Scholar 

  10. Shen W, Han J, Wang J et al (2018) SHINE+: a general framework for domain specific entity linking with heterogeneous information networks. IEEE Trans Knowl Data Eng 30(2):353–366

    Article  Google Scholar 

  11. Liu M, Chen L, Liu B et al (2017) DBpedia-based entity linking via greedy search and adjusted Monte Carlo random walk. ACM Trans Inf Syst 36(2):1–34. Article 16

    Google Scholar 

  12. Xiao H, Gao J, Li Q et al (2019) Towards confidence interval estimation in truth discovery. IEEE Trans Knowl Data Eng 31(3):575–588

    Article  Google Scholar 

  13. Li Z, Liu J, Tang J et al (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098

    Article  Google Scholar 

  14. Wu L, Jin R, Jain AK (2013) Tag completion for image retrieval. IEEE Trans Pattern Anal Mach Intell 35(3):716–727

    Article  Google Scholar 

  15. Pu Y, Gan Z, Ren C et al (2017) Variational autoencoder for deep learning of images, labels and captions. In: Proceedings of advances in neural information processing systems (NIPS 2017), pp 2352–2360

    Google Scholar 

  16. Wu X, Zhang S (2003) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowl Data Eng 15(2):353–367

    Article  Google Scholar 

  17. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  18. Wu J, Liu H, Xiong H et al (2015) K-means-based consensus clustering: a unified view. IEEE Trans Knowl Data Eng 27(1):155–169

    Article  Google Scholar 

  19. Ray S, Scott S, Blockeel H (2011) Multi-instance learning. In: Encyclopedia of machine learning. Springer US, pp 701–710

    Google Scholar 

  20. Zhang M, Zhou Z (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038–2048

    Article  MATH  Google Scholar 

  21. Zhou Z, Zhang M, Huang S et al (2012) Multi-instance multi-label learning. Artif Intell 176(1):2291–2320

    Article  MathSciNet  MATH  Google Scholar 

  22. Surdeanu M, Tibshirani J, Nallapati R et al (2012) Multi-instance multi-label learning for relation extraction. In: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP’12), pp 455–465

    Google Scholar 

  23. Liu B, Lee W, Yu P et al (2002) Partially supervised classification of text documents. In: Proceedings of international conference on machine learning (ICML’02), pp 387–394

    Google Scholar 

  24. Wu Z, Wang Y, Wang Y et al (2015) Product review spammer detection: a hybrid learning model. In: Proceedings of 2015 IEEE international conference of data mining (ICDM’15), pp 1039–1044

    Google Scholar 

  25. Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improvements. In: Proceedings of 5th international conference of extending database technology (EDBT 1996), pp 3–17

    Google Scholar 

  26. Pei J, Han J, Mortazavi-Asl B et al (2001) PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of 17th international conference on data engineering (ICDE 2001), pp 215–224

    Google Scholar 

  27. Ayres J, Flannick J, Gehrke J et al (2002) Sequential pattern mining using a bitmap representation. In: Proceedings of 8th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2002), pp 429–435

    Google Scholar 

  28. Zaki M (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn J 42(1–2):31–60

    Article  MATH  Google Scholar 

  29. Zhang C, Han J, Shou L et al (2014) Splitter: mining fine-grained sequential patterns in semantic trajectories. Proc VLDB Endow 7(9):769–780

    Article  Google Scholar 

  30. Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41

    Article  Google Scholar 

  31. Bollacker K, Evans C, Paritosh P et al (2008) FreeBase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data (SIGMOD 2008), pp 1247–1250

    Google Scholar 

  32. Dong X, Gabrilovich E, Heitz G et al (2014) Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (SIGKDD 2014), pp 601–610

    Google Scholar 

  33. Trouillon T, Dance CR, Gaussier É et al (2017) Knowledge graph completion via complex tensor factorization. J Mach Learn Res 18(1):4735–4772

    MathSciNet  MATH  Google Scholar 

  34. Geng Z, Chen G, Han Y et al (2020) Semantic relation extraction using sequential and tree-structured LSTM with attention. Inf Sci 509:183–192

    Article  Google Scholar 

  35. Shi C, Ding J, Cao X et al (2020) Entity set expansion in knowledge graph: a heterogeneous information network perspective. Front Comput Sci 15(1):1–12

    Google Scholar 

  36. Vu T, Nguyen TD, Nguyen DQ et al (2019) A capsule network-based embedding model for knowledge graph completion and search personalization. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp 2180–2189

    Google Scholar 

  37. Che F, Zhang D, Tao J et al (2020) Regarding neural network parameters as relation embeddings for knowledge graph completion. In: AAAI, pp 2774–2781

    Google Scholar 

  38. He G, Li J, Zhao WX et al (2020) Mining implicit entity preference from user-item interaction data for knowledge graph completion via adversarial learning. In: Proceedings of the web conference 2020, pp 740–751

    Google Scholar 

  39. Akrami F, Saeef MS, Zhang Q et al (2020) Realistic re-evaluation of knowledge graph completion methods: an experimental study. In: Proceedings of the 2020 ACM SIGMOD international conference on management of data (SIGMOD 2020), pp 1995–2010

    Google Scholar 

  40. Li M, Lin Y, Hoover J et al (2019) Multilingual entity, relation, event and human value extraction. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics (demonstrations), pp 110–115

    Google Scholar 

  41. Wu T, Qi G, Li C et al (2018) A survey of techniques for constructing Chinese knowledge graphs and their applications. Sustainability 10(9):3245

    Article  Google Scholar 

  42. Mao Y, Zhao T, Kan A et al (2020) Octet: online catalog taxonomy enrichment with self-supervision. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2247–2257

    Google Scholar 

  43. Tang X, Chen L, Cui J et al (2019) Knowledge representation learning with entity descriptions, hierarchical types, and textual relations. Inf Process Manage 56(3):809–822

    Article  Google Scholar 

  44. Pham DH, Le AC (2018) Learning multiple layers of knowledge representation for aspect based sentiment analysis. Data Knowl Eng 114:26–39

    Article  Google Scholar 

  45. Paulius D, Sun Y (2019) A survey of knowledge representation in service robotics. Robot Auton Syst 118:13–30

    Article  Google Scholar 

  46. Kumarasinghe K, Kasabov N, Taylor D (2020) Deep learning and deep knowledge representation in spiking neural networks for brain-computer interfaces. Neural Netw 121:169–185

    Article  Google Scholar 

  47. Huo Y, Wong DF, Ni LM et al (2020) HeTROPY: explainable learning diagnostics via heterogeneous maximum-entropy and multi-spatial knowledge representation. Knowl-Based Syst 207:106389

    Article  Google Scholar 

  48. Huang Z, Xu X, Ni J et al (2019) Multimodal representation learning for recommendation in Internet of Things. IEEE Internet Things J 6(6):10675–10685

    Article  Google Scholar 

  49. Wang WY, Mazaitis K, Lao N et al (2015) Efficient inference and learning in a large knowledge base. Mach Learn 100(1):101–126

    Article  MathSciNet  MATH  Google Scholar 

  50. Cohen WW (2016) TensorLog: a differentiable deductive database. arXiv preprint arXiv:1605.06523

  51. Wang Z, Zhang J, Feng J et al (2014) Knowledge graph embedding by translating on hyperplanes. In: Proceedings of twenty-eighth AAAI conference on artificial intelligence (AAAI 2014), pp 1112–1119

    Google Scholar 

  52. Bordes A, Usunier N, Garcia-Duran A et al (2013) Translating embeddings for modeling multi-relational data. In: Proceedings of advances in neural information processing systems (NIPS 2013), pp 2787–2795

    Google Scholar 

  53. Wen J, Li J, Mao Y et al (2016) On the representation and embedding of knowledge bases beyond binary relations. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence (IJCAI 2016), pp 1300–1307

    Google Scholar 

  54. Ji G, Liu K, He S et al (2016) Knowledge graph completion with adaptive sparse transfer matrix. In: Proceedings of thirtieth AAAI conference on artificial intelligence (AAAI 2016), pp 985–961

    Google Scholar 

  55. Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective learning on multi-relational data. In: Proceedings of machine leaning (ICML 2011), pp 809–816

    Google Scholar 

  56. Chang KW, Yih W, Yang B et al (2014) Typed tensor decomposition of knowledge bases for relation extraction. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP 2014), pp 1568–1579

    Google Scholar 

  57. Nickel M, Jiang X, Tresp V (2014) Reducing the rank in relational factorization models by including observable patterns. In: Proceedings of advances in neural information processing systems (NIPS 2014), pp 1179–1187

    Google Scholar 

  58. Xiao H, Huang M, Zhu X (2016) From one point to a manifold: knowledge graph embedding for precise link prediction. In: Proceedings of the twenty-fifth international joint conference on artificial intelligence (IJCAI 2016), pp 1315–1321

    Google Scholar 

  59. Nickel M, Rosasco L, Poggio T (2016) Holographic embeddings of knowledge graphs. In: Proceedings of thirtieth AAAI conference on artificial intelligence (AAAI 2016), pp 1955–1961

    Google Scholar 

  60. Socher R, Chen D, Manning CD et al (2013) Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of advances in neural information processing systems (NIPS 2013), pp 926–934

    Google Scholar 

  61. Shi B, Weninger T (2017) ProjE: embedding projection for knowledge graph completion. In: Proceedings of thirty-first AAAI conference on artificial intelligence (AAAI 2017), pp 1236–1262

    Google Scholar 

  62. Han X, Sun L (2016) Context-sensitive inference rule discovery: a graph-based method. In: Proceedings of COLING 2016, the 26th international conference on computational linguistics: technical papers (COLING 2016), pp 2902–2911

    Google Scholar 

  63. Wang Q, Wang B, Guo L (2015) Knowledge base completion using embeddings and rules. In: Proceedings of twenty-fourth international joint conference on artificial intelligence (IJCAI 2015), pp 1859–1865

    Google Scholar 

  64. Toutanova K, Chen D, Pantel P et al (2015) Representing text for joint embedding of text and knowledge bases. In: Proceedings of the 2015 conference on empirical methods in natural language processing (EMNLP 2015), pp 1499–1509

    Google Scholar 

  65. Xie R, Liu Z, Jia J et al (2016) Representation learning of knowledge graphs with entity descriptions. In: Proceedings of thirtieth AAAI conference on artificial intelligence (AAAI 2016), pp 2659–2665

    Google Scholar 

  66. Cooper A (2004) The inmates are running the asylum: why high-tech products drive us crazy and how to restore the sanity. Sams, Indianapolis

    Google Scholar 

  67. Grudin J, Pruitt J (2002) Personas, participatory design and product development: an infrastructure for engagement. In: Proceedings of participatory design conferences (PDC 2002), pp 144–152

    Google Scholar 

  68. Lester JC, Converse SA, Kahler SE et al (1997) The persona effect: affective impact of animated pedagogical agents. In: Proceedings of the ACM SIGCHI conference on human factors in computing systems (CHI 1997), pp 359–366

    Google Scholar 

  69. Sharma V, Dyreson C (2018) LINKSOCIAL: linking user profiles across multiple social media platforms. In: Proceeding of 2018 IEEE international conference on big knowledge (ICBK), pp 260–267

    Google Scholar 

  70. Garcia-Davalos A, Garcia-Duque J (2020) User profile modelling based on mobile phone sensing and call logs. In: Information technology and systems. ICITS 2020. Advances in intelligent systems and computing, pp 243–254

    Google Scholar 

  71. Ellison NB, Steinfield C, Lampe C (2007) The benefits of Facebook “friends:” social capital and college students’ use of online social network sites. J Comput-Mediat Commun 12(4):1143–1168

    Article  Google Scholar 

  72. Pang B, Lillian L, Shivakumar V (2002) Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP 2002), pp 79–86

    Google Scholar 

  73. Tang D, Wei F, Yang N et al (2014) Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (ACL 2014), pp 1555–1565

    Google Scholar 

  74. dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th international conference on computational linguistics (COLING 2014), pp 69–78

    Google Scholar 

  75. Zhou S, Chen Q, Wang X (2014) Active semi-supervised learning method with hybrid deep belief networks. PLoS ONE 9(9):e107122

    Article  Google Scholar 

  76. Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (SIGKDD2004), pp 168–177

    Google Scholar 

  77. Rao Y, Li Q, Mao X et al (2014) Sentiment topic models for social emotion mining. Inf Sci 266:90–100

    Article  Google Scholar 

  78. Liu S, Cheng X, Li F et al (2015) TASC: topic-adaptive sentiment classification on dynamic tweets. IEEE Trans Knowl Data Eng 27(6):1696–1709

    Article  Google Scholar 

  79. Musto C, Polignano M, Semeraro G et al (2020) MYRROR: a platform for holistic user modeling. User Model User-Adap Inter 30:477–511

    Article  Google Scholar 

  80. Lu J, Wu D, Mao M et al (2015) Recommender system application developments: a survey. Decis Support Syst 74:12–32

    Article  Google Scholar 

  81. Qian Y, Zhang Y, Ma X et al (2019) EARS: emotion-aware recommender system based on hybrid information fusion. Inf Fus 46:141–146

    Article  Google Scholar 

  82. García-Sánchez F, Colomo-Palacios R, Valencia-García R (2020) A social-semantic recommender system for advertisements. Inf Process Manage 57(2):102153

    Google Scholar 

  83. Singh VP, Pandey MK, Singh PS et al (2020) Neural net time series forecasting framework for time-aware web services recommendation. Procedia Comput Sci 171:1313–1322

    Article  Google Scholar 

  84. Miller BN, Konstan JA, Riedl J (2004) PocketLens: toward a personal recommender system. ACM Trans Inf Syst (TOIS) 22(3):437–476

    Article  Google Scholar 

  85. Chen T, Yin H, Ye G et al (2020) Try this instead: personalized and interpretable substitute recommendation. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (SIGIR’20), pp 891–900

    Google Scholar 

  86. Feng Y, Hu B, Lv F et al (2020) ATBRG: adaptive target-behavior relational graph network for effective recommendation. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (SIGIR 2020), pp 2231–2240

    Google Scholar 

  87. Zhao C, Li C, Xiao R et al (2020) CATN: cross-domain recommendation for cold-start users via aspect transfer network. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (SIGIR 2020), pp 229–238

    Google Scholar 

  88. Wang M, Lin Y, Lin G et al (2020) M2GRL: a multi-task multi-view graph representation learning framework for web-scale recommender systems. In: Proceedings of the 26th ACM SIGKDD conference on knowledge discovery and data mining (SIGKDD 2020), pp 2349–2358

    Google Scholar 

  89. Tai C, Wu M, Chu Y et al (2020) MVIN: learning multiview items for recommendation. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (SIGIR 2020), pp 99–108

    Google Scholar 

  90. Goodfellow I, Bengio Y, Courville A et al (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  91. Zhang S, Yao L, Sun A et al (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv (CSUR) 52(1):1–38

    Article  Google Scholar 

  92. Karatzoglou A, Hidasi B (2017) Deep learning for recommender systems. In: Proceedings of the eleventh ACM conference on recommender systems (SIGKDD 2017), pp 396–397

    Google Scholar 

  93. Xu Z, Chen C, Lukasiewicz T et al (2016) Tag-aware personalized recommendation using a deep-semantic similarity model with negative sampling. In: Proceedings of the 25th ACM international on conference on information and knowledge management (CIKM 2016), pp 1921–1924

    Google Scholar 

  94. Wu W, Zhao J, Zhang C et al (2017) Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding. Knowl-Based Syst 128:71–77

    Article  Google Scholar 

  95. Tuan TX, Phuong TM (2017) 3D convolutional networks for session-based recommendation with content features. In: Proceedings of the eleventh ACM conference on recommender systems (RecSys 2017), pp 138–146

    Google Scholar 

  96. Wu C, Wang J, Liu J et al (2016) Recurrent neural network based recommendation for time heterogeneous feedback. Knowl-Based Syst 109:90–103

    Article  Google Scholar 

  97. Pujahari A, Sisodia DS (2019) Modeling side information in preference relation based restricted Boltzmann machine for recommender systems. Inf Sci 490:126–145

    Article  Google Scholar 

  98. Zheng Y, Tang B, Ding W et al (2016) A neural autoregressive approach to collaborative filtering. In: Proceedings of the 33rd international conference on international conference on machine learning (ICML 2016), pp 764–773

    Google Scholar 

  99. Hu B, Shi C, Zhao W et al (2018) Leveraging meta-path based context for top-n recommendation with a neural co-attention model. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (SIGKDD 2018), pp 1531–1540

    Google Scholar 

  100. Tang J, Du X, He X et al (2019) Adversarial training towards robust multimedia recommender system. IEEE Trans Knowl Data Eng 32(5):855–867

    Article  Google Scholar 

  101. Zheng G, Zhang F, Zheng Z et al (2018) DRN: a deep reinforcement learning framework for news recommendation. In: Proceedings of the 2018 world wide web conference (WWW 2018), pp 167–176

    Google Scholar 

  102. Xu C, Zhao P, Liu Y et al (2019) Recurrent convolutional neural network for sequential recommendation. In: The world wide web conference (WWW 2019), pp 3398–3404

    Google Scholar 

  103. Lv F, Jin T, Yu C et al (2019) SDM: sequential deep matching model for online large-scale recommender system. In: Proceedings of the 28th ACM international conference on information and knowledge management (CIKM 2019), pp 2635–2643

    Google Scholar 

  104. Zou L, Xia L, Ding Z et al (2019) Reinforcement learning to optimize long-term user engagement in recommender systems. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (SIGKDD 2019), pp 2810–2818

    Google Scholar 

  105. Chen L, Wu Z, Cao J et al (2020) Travel recommendation via fusing multi-auxiliary information into matrix factorization. ACM Trans Intell Syst Technol (TIST) 11(2):1–24

    Article  Google Scholar 

  106. Xue F, He X, Wang X et al (2019) Deep item-based collaborative filtering for top-n recommendation. ACM Trans Inf Syst (TOIS) 37(3):1–25

    Article  Google Scholar 

  107. Yi B, Shen X, Liu H et al (2019) Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE Trans Ind Inf 15(8):4591–4601

    Article  Google Scholar 

  108. Ren Y, Tomko M, Salim FD et al (2017) A location-query-browse graph for contextual recommendation. IEEE Trans Knowl Data Eng 30(2):204–218

    Article  Google Scholar 

  109. Huang C, Jiang W, Wu J et al (2020) Personalized review recommendation based on users’ aspect sentiment. ACM Trans Internet Technol (TOIT) 20(4):1–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Xi'an Jiaotong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, J. (2023). Introduction. In: E-Commerce Big Data Mining and Analytics. Advanced Studies in E-Commerce. Springer, Singapore. https://doi.org/10.1007/978-981-99-3588-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3588-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3587-1

  • Online ISBN: 978-981-99-3588-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics