Skip to main content

Industrial Sustainability: Economics, Cost, and Bioavailability of Biofertilizers

  • Chapter
  • First Online:
Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry
  • 155 Accesses

Abstract

Biofertilizers have gained huge importance and attention in agriculture as they improve plant growth and thus yields of crops. Additionally, they have overcome the problems caused by the usage of chemical fertilizers to crop plants. Biofertilizers are the formulations of efficient microbes that will facilitate the plant’s uptake of nutrients from the soil through either direct or indirect mechanisms. Moreover, they also accelerate the other microbial processes in the soil. The advantages such as low cost, eco-friendly nature, and increased organic content in the soil make them a good strategy for sustainable agriculture. Biofertilizers help in preventing soil erosion as well as improving the soil structure. Also, biofertilizers have a longer shelf life and have no adverse effects on the environment. Biofertilizers are efficient enough to secrete and produce plant growth-regulating hormones like auxins, gibberellins, and cytokines having great importance in plant growth and development. Biofertilizers are a big breakthrough in the field of organic farming as it is completely dependent on the natural microflora of the soil. This chapter includes the economics, cost, as well as bioavailability of biofertilizers with respect to industries. The cost-benefit ratio for a farmer is also discussed in this chapter. The enhancement in cost-benefit ratio, as well as better economics, proved it as an economically feasible technology and is convincing the farmers for future adoption. Hence, in the current scenario, biofertilizers are an evitable input to minimize the use of synthetic fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39(1):53–56. https://doi.org/10.1007/bf02814530

    Article  Google Scholar 

  • Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335. https://doi.org/10.1016/j.rser.2018.03.067

    Article  Google Scholar 

  • Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool P (eds) Emerging technologies and management of crop stress tolerance, vol 2. Elsevier, New York, pp 69–95

    Chapter  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbial Interact 15:1147–1156

    Article  Google Scholar 

  • Awais M, Tariq M, Ali A, Ali Q, Khan A, Tabassum B, Nasir IA, Husnain T (2017) Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatal Agric Biotechnol 11:312–321

    Article  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01473

  • Bashan Y, Harrison SK, Whitmoyer RE (1990) Enhanced growth of wheat and soybean plant inoculated with Azospirillum brasilense is not necessary due to general enhancement of mineral uptake. Appl Environ Microbiol 56:769–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43(2):103–121. https://doi.org/10.1139/m97-015

    Article  Google Scholar 

  • Bashan Y, Puente ME, Myrold DD, Toledo G (1998) In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiol Ecol 26:165–170

    Article  Google Scholar 

  • Belhadi D, de Lajudie P, Ramdani N, Le Roux C, Boulila F, Tisseyre P, Boulila A, Benguedouar A, Kaci Y, Laguerre G (2018) Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol 41(2):122–130. https://doi.org/10.1016/j.syapm.2017.10.004

    Article  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01559

  • Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130. https://doi.org/10.1016/j.soilbio.2016.08.020

    Article  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184(2):311–321. https://doi.org/10.1007/bf00010460

    Article  Google Scholar 

  • Chouyia FE, Romano I, Fechtali T, Fagnano M, Fiorentino N, Visconti D, Idbella M, Ventorino V, Pepe O (2020) P-Solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Front Plant Sci 7:1137

    Article  Google Scholar 

  • Cox CD, Adams P (1985) Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun 48(1):130–138. https://doi.org/10.1128/iai.48.1.130-138.1985

    Article  PubMed  PubMed Central  Google Scholar 

  • Damir O, Mladen PI, Bozidar S, Sran N (2011) Cultivation of the bacterium Azotobacter chroococcum for preparation of biofertilizers. Afr J Biotechnol 10:3104–3111

    Article  Google Scholar 

  • Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A (2022) Biofertilizer: the future of food security and food safety. Microorganisms 10(6):1220. https://doi.org/10.3390/microorganisms10061220

    Article  PubMed  PubMed Central  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Doilom K, Pem D, Suwannarach N, Promputtha I (2020) Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium and Talaromyces. Front Microbiol 11:2443

    Article  Google Scholar 

  • Ebrahimi-Nik M, Ebrahimi SH, Abbaspour-Fard MH, Zeynali R, Bayati MR (2020) Farm biogas plants, a sustainable waste to energy and bio-fertilizer opportunity for Iran. J Clean Prod 253:119876. https://doi.org/10.1016/j.jclepro.2019.119876

    Article  Google Scholar 

  • Emami S, Alikhani HA, Pourbabaei AA, Etesami H, Sarmadian F, Motessharezadeh B (2019) Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environ Sci Pollut Res 26(19):19804–19813

    Article  Google Scholar 

  • Faried ASM, Mohamed HM, El-Dsouky MM, El-Rewainy HM (2019) Isolation and characterization of phosphate solubilizing actinomycetes from rhizosphere soil. Assiut J Agric Sci 49(4):125–137

    Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  PubMed  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing micro-organisms as biofertilizer. Omega Scientific Publishers, New Delhi, p 176

    Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crop Prod 76:41–48

    Article  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40(3):255–260

    Article  Google Scholar 

  • Gutierez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hashem MA (2001) Problems and prospects of cyanobacterial biofertilizer for rice cultivation. Aust J Plant Physiol 28:881–888

    Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3- acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbial Interact 20:619–626

    Article  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24(4):389–395

    Article  Google Scholar 

  • Islam MM, Shamsuddoha MD (2018) Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ Sci Policy 87:45–54

    Article  Google Scholar 

  • Jensen HL (1954) The azotobacteriaceae. Bacteriol Rev 18:195–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnstone DB (1955) Azotobacter fluorescence. J Bacteriol 69:481–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang S, Waqas M, Shahzad R, You Y, Asaf S, Khan MA, Lee K, Joo G, Kim S, Lee I (2017) Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). J Soil Sci Plant Nutr 63(3):233–241

    Google Scholar 

  • Kannaiyan S (ed) (2002) Biotechnology of biofertilizers. Alpha Science Int’l Ltd

    Google Scholar 

  • Kaur P, Dhull SB, Sandhu KS, Salar RK, Purewal SS (2018) Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. J Food Meas Charact 12:1530–1538

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi current perspective. Arch Agron Soil Sci 56:73–98

    Article  Google Scholar 

  • Kucey RMN (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63(4):671–678

    Article  Google Scholar 

  • Kumar S, Diksha, Sindhu SS, Kumar R (2022) Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci 3:100094. https://doi.org/10.1016/j.crmicr.2021.100094

    Article  PubMed  Google Scholar 

  • Kumari P, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS (2018) Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal Agric Biotechnol 16:163–171

    Article  Google Scholar 

  • Lauwers AM (1974) Biodegradation and utilization of silica and quartz. Arch Microbiol 95:67–78

    Article  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  Google Scholar 

  • Liu XX, Jiang XX, He XY, Zhao WR, Cao YY, Guo TT et al (2019) Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J Plant Growth Regul 38:1314–1324. https://doi.org/10.1007/s00344-019-09935-8. [CrossRef] [Google Scholar]

    Article  Google Scholar 

  • Llorente BE, Alasia MA, Larraburu EE (2016) Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. New Biotechnol 33:32–40

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  Google Scholar 

  • Mahdi I, Fahsi N, Hafidi M, Allaoui A, Biskri L (2020) Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa willd. Microorganisms 8:948. [Google Scholar] [CrossRef]

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmud AA, Upadhyay SK, Srivastava AK, Bhojiya AA (2021) Biofertilizers: a Nexus between soil fertility and crop productivity under abiotic stress. Curr Res Environ Sustain 3:100063. https://doi.org/10.1016/j.crsust.2021.100063

    Article  Google Scholar 

  • Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Microbial inoculants in sustainable agricultural productivity, pp 17–40. https://doi.org/10.1007/978-81-322-2644-4_2

    Chapter  Google Scholar 

  • Mendoza-Arroyo GE, Chan-Bacab MJ, Aguila-Ramírez RN, Ortega-Morales BO, Canché Solís RE, Chab-Ruiz AO, Cob-Rivera KI, Dzib-Castillo B, Tun-Che RE, Camacho-Chab JC (2020) Inorganic phosphate solubilization by a novel isolated bacterial strain Enterobacter sp. ITCB-09 and its application potential as biofertilizer. Agriculture 10(9):383

    Article  Google Scholar 

  • Menge JA (1983) Utilization of vesicular arbuscular mycorrhizal fungi in agriculture. New Phytol 81:553–559

    Article  Google Scholar 

  • Miller IM (1990) Bacterial leaf nodule symbiosis. Adv Bot Res 17:163–234

    Article  Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer’s for sustainable agriculture and economic development. Consilience 11:41–61

    Google Scholar 

  • Mitter EK (2021) Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Frontiers. https://www.frontiersin.org/articles/10.3389/fsufs.2021.606815/full

  • Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ (2021) Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Front Sustain Food Syst 5. https://doi.org/10.3389/fsufs.2021.606815

  • Mohamed E, Farag A, Youssef S (2018) Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from Tomato Plant Rhizosphere. J Environ Prot 9:266–277. https://doi.org/10.4236/jep.2018.93018

    Article  Google Scholar 

  • Móring A, Hooda S, Raghuram N, Adhya TK, Ahmad A, Bandyopadhyay SK, Barsby T, Beig G, Bentley AR, Bhatia A, Dragosits U, Drewer J, Foulkes J, Ghude SD, Gupta R, Jain N, Kumar D, Kumar RM, Ladha JK, Sutton MA (2021) Nitrogen challenges and opportunities for agricultural and environmental science in India. Front Sustain Food Syst 5. https://doi.org/10.3389/fsufs.2021.505347

  • Motsara MR, Bhattacharyya PB, Srivastava B (1995) Biofertilizers their description and characteristics. In: Biofertiliser technology. Marketing and usage. A source book-cum-glossary. Fertiliser Development and Consultation Organization, New Delhi, pp 9–18

    Google Scholar 

  • Nagananda GS, Das A, Bhattacharya S, Kalpana T (2010) In vitro studies on effect of biofertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonella foenumgraecum L. using a novel glass marble containing liquid medium. Int J Bot 6(4):394–403

    Article  Google Scholar 

  • Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK (2019) Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatal Agric Biotechnol 21:101326. https://doi.org/10.1016/j.bcab.2019.101326

    Article  Google Scholar 

  • Northup DE, Lavoie KH (2010) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222

    Google Scholar 

  • Nyoki D, Ndakidemi PA (2018) Rhizobium inoculation reduces P and K fertilization requirement in corn-soybean intercropping. Rhizosphere 5:51–56

    Article  Google Scholar 

  • Ogbo FC (2010) Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol 101(11):4120–4124

    Article  PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzales C, Lage M, Lage P (2015) Agronomic applications of Azospirillum and other PGPR. In: de Brujin FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 921–932

    Google Scholar 

  • Owen D, Williams A, Griffith G, Withers P (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54. https://doi.org/10.1016/j.apsoil.2014.09.012

    Article  Google Scholar 

  • Paul S, Verma OP, Rathi MS, Tyagi SP (2002) Effect of Azotobacter inoculation on seed germination and yield of onion (Allium cepa). Ann Agric Res 23:297–299

    Google Scholar 

  • Pereg L, Luz E, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414

    Article  Google Scholar 

  • Perez-Corona ME, Verhoeven JTA (1996) Effects of soil P status on growth and P and N uptake of Carex species from fens differing in P-availability. Acta Botanica Neerlandica 45:381–392

    Article  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

    Google Scholar 

  • Pirttilä AM, Mohammad Parast Tabas H, Baruah N, Koskimäki JJ (2021) Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9(4):817. https://doi.org/10.3390/microorganisms9040817

    Article  PubMed  PubMed Central  Google Scholar 

  • Polyanskaya LM, Vedina OT, Lysak LV, Zvyagintsev DG (2002) The growth-promoting effects of Beijerinckia mobilis and Clostridium sp. cultures on some agricultural crops. Microbiology 71:109–115

    Article  Google Scholar 

  • Poomthongdee N, Duangmal K, Pathom-aree W (2015) Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. J Antibiot 68(2):106–114

    Article  Google Scholar 

  • Prabhu N, Borkar S, Garg S (2018) Phosphate solubilization mechanisms in Alkaliphilic Bacterium Bacillus marisflavi FA7. Curr Sci 114:845–853. https://doi.org/10.18520/cs/v114/i04/845-853

    Article  Google Scholar 

  • Raimi A, Roopnarain A, Adeleke R (2021) Biofertilizer production in Africa: current status, factors impeding adoption and strategies for success. Sci Afr 11:e00694. https://doi.org/10.1016/j.sciaf.2021.e00694

    Article  Google Scholar 

  • Renneberg R, Berkling V, Loroch V (2017) Green biotechnology. In: Biotechnology for beginners, 2nd edn. Academic Press, Cambridge, MA, pp 235–279. https://doi.org/10.1016/B978-0-12-801224-6.00007-2

    Chapter  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  Google Scholar 

  • Roger PA, Ladha JK (1992) Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil 141:41–55

    Article  Google Scholar 

  • Roper MM, Gault RR, Smith NA (1995) Contribution to the N status of soil by free-living N2-fixing bacteria in a Lucerne stand. Soil Biol Biochem 27:467–471

    Article  Google Scholar 

  • Ruiz-Sanchez M, Armada E, Munoz Y, Salamone IE, Aroca R, Ruiz-Lozano JM, Azcon R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  PubMed  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251:943–953

    Article  PubMed  Google Scholar 

  • Salar RK, Purewal SS, Sandhu KS (2017) Bioactive profile, free-radical scavenging potential, DNA damage protection activity, and mycochemicals in Aspergillus awamori (MTCC 548) extracts: a novel report on filamentous fungi. 3 Biotech 7(3):164. https://doi.org/10.1007/s13205-017-0834-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Islam T, Biswas G, Alam S, Hossain M, Talukder N (2012) Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. Acta Microbiol Immunol Hung 59(2):199–213

    Article  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwintzer CR, Tjepkema JD (1990) The biology of Frankia and actinorhizal plants. Academic Press, San Diego, CA

    Google Scholar 

  • Sekhar M, Riotte J, Ruiz L, Jouquet J, Braun JJ (2016) Influences of climate and agriculture on water and biogeochemical cycles: Kabini critical zone observatory. Proc Indian Natl Sci Acad 82(3). https://doi.org/10.16943/ptinsa/2016/48488

  • Selvi KB, Paul JJA, Vijaya V, Saraswathi K (2017) Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochem Mol Biol J 3(1):1–7

    Google Scholar 

  • Sethi SK, Adhikary SP (2012) Azotobacter: a plant growth promoting rhizobacteria used as biofertilizer. Dyn Biochem Process Biotechnol Mol Biol 6:68–74

    Google Scholar 

  • Shailendra Singh GG (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 07(02). https://doi.org/10.4172/1948-5948.1000188

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  PubMed  Google Scholar 

  • Shivprasad S, Page WJ (1989) Catechol formation and melanization by Na+-dependent Azotobacter chroococcum: a protective mechanism for aeroadaptation. Appl Environ Microbiol 55:1811–1817

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh I, Giri B (2017) Arbuscular mycorrhiza mediated control of plant pathogens. In: Mycorrhiza—nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 131–160

    Chapter  Google Scholar 

  • Singh S, Kaur M, Sogi DS, Purewal SS (2018) A comparative study of phytochemicals, antioxidant potential and in-vitro DNA damage protection activity of different oat (Avena sativa) cultivars from India. J Food Meas Charact 13:1–10. https://doi.org/10.1007/s11694-018-9950-x

    Article  Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2014) Potential of biofertilizer’s in crop production in Indian agriculture. Am J Plant Nutr Fertil Technol 4:33–40

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smolander A, Sarsa ML (1990) Frankia strains of soil under Betula pendula: behaviour in soil and in pure culture. Plant Soil 122:129–136

    Article  Google Scholar 

  • Socolofsky MD, Wyss O (1962) Resistance of the Azotobacter cyst. J Bacteriol 84:119–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Soumare A, Boubekri K, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L (2020) From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: status and needs. Front Bioeng Biotechnol 7:425. https://doi.org/10.3389/fbioe.2019.00425

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crop Res 65:183–196

    Article  Google Scholar 

  • Sumbul A, Ansari RA, Rizvi R, Mahmood I (2020) Azotobacter: a potential bio-fertilizer for soil and plant health management. Saudi J Biol Sci 27(12):3634–3640. https://doi.org/10.1016/j.sjbs.2020.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugar cane and sugar yields. Field Crop Res 77:43–44

    Article  Google Scholar 

  • Sylvia DM (1990) Inoculation of native woody plants with vesicular–arbuscular fungi for phosphate mine land reclamation. Agric Ecosyst Environ 31:847–897

    Article  Google Scholar 

  • Tena W, Wolde-Meskel E, Walley F (2016) Symbiotic efficiency of native and exotic rhizobium strains nodulating lentil (Lens culinaris Medik.) in soils of southern Ethiopia. Agronomy 6(1):11. https://doi.org/10.3390/agronomy6010011

    Article  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenobacillus polymyza. Soil Biol Biochem 31:1847–1852

    Article  Google Scholar 

  • Transparency Market Research (2014) Biofertilizers (nitrogen fixing, phosphate solubilizing and others) market for seed treatment and soil treatment applications–global industry analysis, size, share, growth, trends and forecast, 2013–2019. Transparency Market Research, Albany, NY, [Google Scholar]

    Google Scholar 

  • Vande Broek A, Dobbelaere S, Vanderleyden J, Vandommelen A (2000) Azospirillum–plant root interactions: signaling and metabolic interactions. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific Press, Wymondham, pp 761–777

    Google Scholar 

  • Vasanthi N, Saleena LM, Raj SA (2018) Silica solubilization potential of certain bacterial species in the presence of different silicate minerals. Silicon 10:267–275

    Article  Google Scholar 

  • Wan W, Qin Y, Wu H, Zuo W, He H, Tan J, Wang Y, He D (2020) Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil. Front Microbiol 11:752. https://doi.org/10.3389/fmicb.2020.00752

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res 1:35–38

    Article  Google Scholar 

  • Webley DM, Henderson MEK, Taylor IF (1963) The microbiology of rocks and weathered stones. J Soil Sci 14:102–112

    Article  Google Scholar 

  • Wolde-meskel E, Van-Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, Wakweya K, Kanampiu F, Giller KE (2018) Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ 261:144–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav KK, Sarkar S (2019) Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ Ecol 37(1):89–93

    Google Scholar 

  • Yang H, Schroeder-Moreno M, Giri B, Hu S (2018) Arbuscular mycorrhizal fungi and their responses to nutrient enrichment. In: Giri B, Prasad R, Varma A (eds) Root biology. Soil biology, vol 52. Springer, Cham, pp 429–449

    Chapter  Google Scholar 

  • Yao Y, Zhang M, Tian Y, Zhao M, Zeng K, Zhang B, Zhao M, Yin B (2018) Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crop Res 216:158–164

    Article  Google Scholar 

  • Zainuddin N, Keni MF, Ibrahim SAS, Masri MMM (2022) Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatal Agric Biotechnol 39:102237. https://doi.org/10.1016/j.bcab.2021.102237

    Article  Google Scholar 

  • Zambrano-Mendoza JL, Sangoquiza-Caiza CA, Campaña-Cruz DF, Yánez-Guzmán CF (2021) Use of biofertilizers in agricultural production. In: Technology in agriculture. https://doi.org/10.5772/intechopen.98264

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh Lata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lata, S., Jha, A., Sharma, M., Dhawan, S., Damathia, B. (2023). Industrial Sustainability: Economics, Cost, and Bioavailability of Biofertilizers. In: Kaur, S., Dwibedi, V., Sahu, P.K., Kocher, G.S. (eds) Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry . Springer, Singapore. https://doi.org/10.1007/978-981-99-3561-1_19

Download citation

Publish with us

Policies and ethics