Skip to main content

Future and Challenges of Coating Materials

  • Chapter
  • First Online:
Coating Materials

Abstract

Advanced engineering applications require the development of various surface coating types that both protect the surface components used in these applications and satisfy the competing needs for the necessary properties to enhance the surface performance of many parts in electronics, aerospace, biomedicine, automotive, marine, as well as oil and gas pipelines. However, due to the simultaneous demand for opposing features in the same coating, surface coatings on numerous constituents have remained a challenging issue for researchers. Computational coatings have become widely employed in recent years to protect surfaces by obtaining particular properties from one spot to another to be appropriate for various operating circumstances. The computational coating technique is a flexible and effective method for improving the substrate material's properties, particularly to extend its functionality and longevity. Therefore, this chapter offers a detailed analysis of the features and market shares of several materials, including metal, ceramic, plastic and polymer, organic, green, composite, and smart coating. Additionally, this chapter explains the limitations of computational coatings. By using this computational approach, the findings of this chapter should provide researchers and designers in this field with several possibilities for protecting surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saleh B et al (2020) 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Compos B Eng 201:108376. https://doi.org/10.1016/j.compositesb.2020.108376

    Article  Google Scholar 

  2. Park S-M, Lim JH, Seong MR, Sohn D (2019) Efficient generator of random fiber distribution with diverse volume fractions by random fiber removal. Compos B Eng 167:302–316. https://doi.org/10.1016/j.compositesb.2018.12.042

    Article  CAS  Google Scholar 

  3. Ghanavati R, Naffakh-Moosavy H, Moradi M (2021) Additive manufacturing of thin-walled SS316L-IN718 functionally graded materials by direct laser metal deposition. J Market Res 15:2673–2685. https://doi.org/10.1016/j.jmrt.2021.09.061

    Article  CAS  Google Scholar 

  4. Sopronyi M et al (2021) Laser-assisted synthesis of carbon coatings with cobalt oxide nanoparticles embedded in gradient of composition and sizes. Surf Coat Technol 419:127301. https://doi.org/10.1016/j.surfcoat.2021.127301

    Article  CAS  Google Scholar 

  5. Zhang Y, Fu T, Yu L, Shen F, Wang J, Cui K (2022) Improving oxidation resistance of TZM alloy by deposited Si–MoSi2 composite coating with high silicon concentration. Ceram Int 48(14):20895–20904. https://doi.org/10.1016/j.ceramint.2022.04.080

    Article  CAS  Google Scholar 

  6. Hu X, Li F, Shi D, Xie Y, Li Z, Yin F (2020) A design of self-generated Ti–Al–Si gradient coatings on Ti–6Al–4V alloy based on silicon concentration gradient. J Alloys Compd 830:154670. https://doi.org/10.1016/j.jallcom.2020.154670

    Article  CAS  Google Scholar 

  7. Jia M et al (2022) Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials. Mater Sci Eng A 834:142591. https://doi.org/10.1016/j.msea.2021.142591

    Article  CAS  Google Scholar 

  8. Dumée LF, et al (2015) Graphene coatings make steel corrosion-resistant. Carbon N Y 87(C):395–408. https://doi.org/10.1016/j.carbon.2015.02.042

  9. Tscheliessnig R et al (2012) Nano-coating protects biofunctional materials. Mater Today 15(9):394–404. https://doi.org/10.1016/S1369-7021(12)70166-9

    Article  CAS  Google Scholar 

  10. Stathopoulos V et al (2016) Design of functionally graded multilayer thermal barrier coatings for gas turbine application. Surf Coat Technol 295:20–28. https://doi.org/10.1016/j.surfcoat.2015.11.054

    Article  CAS  Google Scholar 

  11. Cui Y, Shen J, Geng K, Hu S (2021) Fabrication of FeCoCrNiMnAl0.5-FeCoCrNiMnAl gradient HEA coating by laser cladding technique. Surf Coat Technol 412:127077. https://doi.org/10.1016/j.surfcoat.2021.127077

    Article  CAS  Google Scholar 

  12. Meschini S, Testoni R, Segantin S, Zucchetti M (2021) ARC reactor: a preliminary tritium environmental impact study. Fusion Eng Des 167:112340. https://doi.org/10.1016/j.fusengdes.2021.112340

    Article  CAS  Google Scholar 

  13. Banthia S, Amid M, Sengupta S, Das S, Das K (2020) Reciprocating sliding wear of Cu, Cu-SiC functionally graded coating on electrical contact. J Mater Eng Perform 29(6):3930–3940. https://doi.org/10.1007/s11665-020-04878-8

    Article  CAS  Google Scholar 

  14. Build a new dataset. https://constellate.org/builder/?unigrams=corrosion%2C+coating

  15. Wu H et al (2021) Influence of spray trajectories on characteristics of cold-sprayed copper deposits. Surf Coat Technol 405:126703. https://doi.org/10.1016/j.surfcoat.2020.126703

    Article  CAS  Google Scholar 

  16. McDonnell LP, et al (2021) Superposition of intra- and inter-layer excitons in twistronic MoSe2/WSe2 bilayers probed by resonant Raman scattering. 2d Mater 8(3):35009. https://doi.org/10.1088/2053-1583/abe778

  17. Allahyarzadeh MH, Aliofkhazraei M, Sabour Rouhaghdam AR, Torabinejad V (2016) Functionally graded nickel–tungsten coating: electrodeposition, corrosion and wear behavior. Canadian Metall Q 55(3):303–311. https://doi.org/10.1080/00084433.2016.1190542

  18. Torabi S, Valefi Z, Ehsani N (2022) The effect of the SiC content on the high duration erosion behavior of SiC/ZrB2– SiC/ZrB2 functionally gradient coating produced by shielding shrouded plasma spray method. Ceram Int 48(2):1699–1714. https://doi.org/10.1016/j.ceramint.2021.09.249

    Article  CAS  Google Scholar 

  19. Wang Y, Liu Q, Zheng Q, Li T, Chong N, Bai Y (2021) Bonding and thermal-mechanical property of gradient nicocraly/ysz thermal barrier coatings with millimeter level thickness. Coatings 11(5). https://doi.org/10.3390/coatings11050600

  20. Yi J, et al (2021) A novel Nb pre-diffusion method for fabricating wear-resistant NbN ceramic gradient coating. Vacuum 185:109993. https://doi.org/10.1016/j.vacuum.2020.109993

  21. Szparaga Ł, Bartosik P, Gilewicz A, Mydłowska K, Ratajski J (2021) Optimisation of mechanical properties of gradient Zr–C coatings. Materials 14(2):1–21. https://doi.org/10.3390/ma14020296

    Article  CAS  Google Scholar 

  22. Amado MM, Olaya JJ, Alfonso JE (2021) Mechanical behavior of YSZ coatings co-deposited with Al and Ag on AISI 316L via RF sputtering. Ceram Int 47(6):7497–7503. https://doi.org/10.1016/j.ceramint.2020.11.089

    Article  CAS  Google Scholar 

  23. Peng C, Yao BH, Li JX, Niu JF (2016) Preparation and characterization of conjugated microspheres FeTCPP-SSA-TiO2. Mater Sci Forum 852:244–251. https://doi.org/10.4028/www.scientific.net/MSF.852.244

    Article  Google Scholar 

  24. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715. https://doi.org/10.1016/j.cub.2017.05.064

    Article  CAS  Google Scholar 

  25. Pandey S et al (2021) Effect of fuel pressure, feed rate, and spray distance on cavitation erosion of Rodojet sprayed Al2O3+50%TiO2 coated AISI410 steel. Surf Coat Technol 410:126961. https://doi.org/10.1016/j.surfcoat.2021.126961

    Article  CAS  Google Scholar 

  26. Kumar A, Patnaik PC, Chen K (2020) Damage assessment and fracture resistance of functionally graded advanced thermal barrier coating systems: experimental and analytical modeling approach. Coatings 10(5). https://doi.org/10.3390/COATINGS10050474

  27. Khan SA, Sezer N, Koç M (2020) Design, synthesis, and characterization of hybrid micro-nano surface coatings for enhanced heat transfer applications. Int J Energy Res 44(15):12525–12534. https://doi.org/10.1002/er.5685

    Article  CAS  Google Scholar 

  28. Sallis JGM (1976) Polymer Coatings. https://doi.org/10.1038/2201259a0

  29. What Are Metal Coatings? https://toefco.com/what-are-metal-coatings/

  30. Metal Coatings Market

    Google Scholar 

  31. Tushinsky L, Kovensky I, Plokhov A, Sindeyev V (2002) Coated metal. Engineering materials. https://doi.org/10.1007/978-3-662-06276-0

  32. Smith JR, Lamprou DA (2014) Polymer coatings for biomedical applications: a review. Trans Inst Met Finish 92(1):9–19. https://doi.org/10.1179/0020296713Z.000000000157

    Article  CAS  Google Scholar 

  33. Barroso G, Li Q, Bordia RK, Motz G (2019) Polymeric and ceramic silicon-based coatings-a review. J Mater Chem A Mater 7(5):1936–1963. https://doi.org/10.1039/c8ta09054h

    Article  CAS  Google Scholar 

  34. Authors F (1963) Plastics coatings—their uses in industry. Anti-Corros Methods Mater 10(4):89–91. https://doi.org/10.1108/eb020056

    Article  Google Scholar 

  35. Maiti T, et al (2021) Plastics in coating applications. In: Reference module in materials science and materials engineering. https://doi.org/10.1016/B978-0-12-820352-1.00176-0

  36. Murata H, Chang B-J, Prucker O, Dahm M, Rühe J (2004) Polymeric coatings for biomedical devices. Surf Sci 570(1):111–118. https://doi.org/10.1016/j.susc.2004.06.185

    Article  CAS  Google Scholar 

  37. Bedel V, Lonjon A, Dantras É, Bouquet M (2018) Influence of silver nanowires on thermal and electrical behaviors of a poly(epoxy) coating for aeronautical application. J Appl Polym Sci 135(47):46829. https://doi.org/10.1002/app.46829

    Article  CAS  Google Scholar 

  38. Chandra AK, Kumar NR (2017) Polymer nanocomposites for automobile engineering applications BT–properties and applications of polymer nanocomposites: clay and carbon based polymer nanocomposites. In: Tripathy DK, Sahoo BP (eds). Berlin, Heidelberg: Springer Berlin Heidelberg, pp 139–172. https://doi.org/10.1007/978-3-662-53517-2_7

  39. Ramos-Fernández JM, Guillem C, Lopez-Buendía A, Paulis M, Asua JM (2011) Synthesis of poly-(BA-co-MMA) latexes filled with SiO2 for coating in construction applications. Prog Org Coat 72(3):438–442. https://doi.org/10.1016/j.porgcoat.2011.05.017

    Article  CAS  Google Scholar 

  40. Dewettinck K, Huyghebaert A (1999) Fluidized bed coating in food technology. Trends Food Sci Technol 10(4):163–168. https://doi.org/10.1016/S0924-2244(99)00041-2

    Article  CAS  Google Scholar 

  41. Luangtana-anan M, Limmatvapirat S (2019) Shellac-based coating polymer for agricultural applications BT–polymers for agri-food applications. In: Gutiérrez TJ (ed). Springer International Publishing, Cham, pp 487–524. https://doi.org/10.1007/978-3-030-19416-1_24

  42. Tüken T (2006) Zinc deposited polymer coatings for copper protection. Prog Org Coat 55(1):60–65. https://doi.org/10.1016/j.porgcoat.2005.11.008

    Article  CAS  Google Scholar 

  43. Grate JW, Wise BM, Gallagher NB (2003) Classical least squares transformations of sensor array pattern vectors into vapor descriptors: simulation of arrays of polymer-coated surface acoustic wave sensors with mass-plus-volume transduction mechanisms. Anal Chim Acta 490(1–2):169–184. https://doi.org/10.1016/S0003-2670(03)00016-3

    Article  CAS  Google Scholar 

  44. Lamminmäki T et al (2013) New silica coating pigment for inkjet papers from mining industry sidestreams. J Surf Eng Mater Adv Technol 03(03):224–234. https://doi.org/10.4236/jsemat.2013.33030

    Article  Google Scholar 

  45. Shit SC, Shah PM (2014) Edible polymers: challenges and opportunities. J Polym 2014:1–13. https://doi.org/10.1155/2014/427259

    Article  CAS  Google Scholar 

  46. Plastic coatings market - growth, trends, Covid-19 impact, and forecast (2022–2027). https://www.mordorintelligence.com/industry-reports/plastic-coatings-market

  47. Robinson G (2016) Global construction market to grow $8 trillion by 2030: driven by China, US and India. 44:1–3

    Google Scholar 

  48. Amit Navale EP (2020) Plastic coatings market by type (polyurethane, acrylic, epoxy, and others), market process (dip coating, spray coating, powder coating, electrophoretic painting, and others), and end-use industry (automotive, aerospace & defense, building & construction. https://www.alliedmarketresearch.com/plastic-coatings-market-A07586

  49. Biopolymer coatings market–global industry assessment & forecast (2021) https://www.vantagemarketresearch.com/industry-report/biopolymer-coatings-market-1684

  50. Abadias G et al (2018) Review article: stress in thin films and coatings: current status, challenges, and prospects. J Vac Sci Technol A Vac Surf Films 36(2):020801. https://doi.org/10.1116/1.5011790

    Article  CAS  Google Scholar 

  51. Paul S (2002) Painting of plastics: new challenges and possibilities. Surf Coat Int Part B Coat Int 85(2):79–86. https://doi.org/10.1007/BF02699746

    Article  Google Scholar 

  52. Vidal D, Bertrand F (2006) Recent progress and challenges in the numerical modeling of coating structure development. In: 2006 TAPPI advanced coating fundamentals symposium, vol. 2006, pp. 228–250

    Google Scholar 

  53. Ceramic Coating Market Outlook (2022–2032) (2022) https://www.futuremarketinsights.com/reports/ceramic-coating-market

  54. Why ceramic coatings are the future of the automotive industry https://gardgroup.com/blog/f/why-ceramic-coatings-are-the-future-of-the-automotive-industry?blogcategory=Exterior+Surfaces

  55. Issues found with ceramic paint protection https://www.melbournemobiledetailing.com.au/ceramic-coating-the-negatives-issues-and-problems/

  56. What are Composite Coatings? https://www.ddcoatings.co.uk/1167/what-are-composite-coatings

  57. Dataintelo (2021) Composite coatings market research report. https://dataintelo.com/report/composite-coatings-market/

  58. Fathi R et al (2022) Past and present of functionally graded coatings: advancements and future challenges. Appl Mater Today 26:101373. https://doi.org/10.1016/j.apmt.2022.101373

    Article  Google Scholar 

  59. Polyester Resins. In Organic coatings. pp 141–150. https://doi.org/10.1002/9781119337201.ch10

  60. Deflorian F (2020) Special issue: ‘advances in organic coatings 2018.’ Coatings 10(6):2018–2020. https://doi.org/10.3390/COATINGS10060555

    Article  Google Scholar 

  61. Si Y, Guo Z (2015) Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale 7(14):5922–5946. https://doi.org/10.1039/C4NR07554D

    Article  CAS  Google Scholar 

  62. Figueira RB, Silva CJR, Pereira EV (2015) Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12(1):1–35. https://doi.org/10.1007/s11998-014-9595-6

    Article  CAS  Google Scholar 

  63. Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys–a review. Acta Biomater 8(7):2442–2455. https://doi.org/10.1016/j.actbio.2012.04.012

    Article  CAS  Google Scholar 

  64. Montemor MF (2014) Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Technol 258:17–37. https://doi.org/10.1016/j.surfcoat.2014.06.031

    Article  CAS  Google Scholar 

  65. Huang VM, Wu SL, Orazem ME, Pébre N, Tribollet B, Vivier V (2011) Local electrochemical impedance spectroscopy: a review and some recent developments. Electrochim Acta 56(23):8048–8057. https://doi.org/10.1016/j.electacta.2011.03.018

    Article  CAS  Google Scholar 

  66. Ataei S, Khorasani SN, Neisiany RE (2019) Biofriendly vegetable oil healing agents used for developing self-healing coatings: a review. Prog Org Coat 129:77–95. https://doi.org/10.1016/j.porgcoat.2019.01.012

    Article  CAS  Google Scholar 

  67. Zhu Q et al (2022) Recent advances in nanotechnology-based functional coatings for the built environment. Mater Today Adv 15:100270. https://doi.org/10.1016/j.mtadv.2022.100270

    Article  CAS  Google Scholar 

  68. Tator K (2017) Nanotechnology: the future of coatings-part 1. pp 1–4

    Google Scholar 

  69. Mamta EPS, Arpita K (2022) Nanocoatings market by type (anti-fingerprint, antimicrobial, self-cleaning (bionic & photocatalytic), anti-corrosion, conductive, and others) and application (electronics, energy, food & packaging, construction, marine, automotive, healthcare, others). https://www.alliedmarketresearch.com/nano-coatings-market

  70. The global nanocoatings market size was USD 7,825.3 million in 2020 and is projected to reach USD 39,869.2 million by 2028, exhibiting a CAGR of 22.7% during the forecast period. (2021). FBI105023

    Google Scholar 

  71. Griffin D (2019) Limitations of nano-coatings for PCBs. https://blog.humiseal.com/6-limitations-of-nano-coatings-for-pcbs

  72. 2020 vision: the future of coatings. (2011). https://www.pfonline.com/articles/2020-vision-the-future-of-coatings

  73. Miao X, Sun D (2010) Graded/gradient porous biomaterials. Materials 3(1):26–47. https://doi.org/10.3390/ma3010026

    Article  CAS  Google Scholar 

  74. Cui W, Qin G, Duan J, Wang H (2017) A graded nano-TiN coating on biomedical Ti alloy: low friction coefficient, good bonding and biocompatibility. Mater Sci Eng C 71:520–528. https://doi.org/10.1016/j.msec.2016.10.033

    Article  CAS  Google Scholar 

  75. Xiong Z, Zhong L, Wang H, Li X (2021) Structural defects, mechanical behaviors and properties of two-dimensional materials. Materials 14(5):1–43. https://doi.org/10.3390/ma14051192

    Article  CAS  Google Scholar 

  76. Kouitat Njiwa R, von Stebut J (1999) Boundary element numerical modelling as a surface engineering tool: application to very thin coatings. Surf Coat Technol. 116–119:573–579. https://doi.org/10.1016/S0257-8972(99)00230-3

  77. Leopold J, Meisel M, Wohlgemuth R, Liebich J (2001) High performance computing of coating-substrate systems. Surf Coat Technol 142–144:916–922. https://doi.org/10.1016/S0257-8972(01)01247-6

    Article  Google Scholar 

  78. Klocke F et al (1998) Improved cutting processes with adapted coating systems. CIRP Ann 47(1):65–68. https://doi.org/10.1016/S0007-8506(07)62786-3

    Article  Google Scholar 

  79. Gogoi R, Sethi SK, Manik G (2021) Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: a molecular dynamics study. Appl Surf Sci 539. https://doi.org/10.1016/j.apsusc.2020.148162

  80. Verma A, Jain N, Sethi SK (2022) Modeling and simulation of graphene-based composites. Innov Graph-Based Polym Comp 167–198. https://doi.org/10.1016/B978-0-12-823789-2.00001-7

  81. Gogoi R, Sethi SK, Manik G (2021) Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: a molecular dynamics study. Appl Surf Sci 539:148162. https://doi.org/10.1016/J.APSUSC.2020.148162

    Article  CAS  Google Scholar 

  82. Kataria A, Verma A, Sethi SK, Ogata S (2022) Introduction to interatomic potentials/forcefields. Lect Notes Appl Comput Mech 99:21–49. https://doi.org/10.1007/978-981-19-3092-8_2/COVER

    Article  Google Scholar 

  83. Maurya AK, Gogoi R, Sethi SK, Manik G (2021) A combined theoretical and experimental investigation of the valorization of mechanical and thermal properties of the fly ash-reinforced polypropylene hybrid composites. J Mater Sci 56(30):16976–16998. https://doi.org/10.1007/S10853-021-06383-2/FIGURES/10

    Article  CAS  Google Scholar 

  84. Agrawal G, Samal SK, Sethi SK, Manik G, Agrawal R (2019) Microgel/silica hybrid colloids: bioinspired synthesis and controlled release application. Polymer (Guildf) 178. https://doi.org/10.1016/j.polymer.2019.121599

  85. Dhiman A, Gupta A, Sethi SK, Manik G, Agrawal G (2022) Encapsulation of wax in complete silica microcapsules. J Mater Res 2022:1–14. https://doi.org/10.1557/S43578-022-00865-Y

    Article  Google Scholar 

  86. Agrawal G, Samal SK, Sethi SK, Manik G, Agrawal R (2019) Microgel/silica hybrid colloids: bioinspired synthesis and controlled release application. Polymer (Guildf) 178:121599. https://www.sciencedirect.com/science/article/pii/S003238611930583X Last accessed June 24, 2019

  87. Shankar U, Sethi SK, Singh BP, Kumar A, Manik G, Bandyopadhyay A (2021) Optically transparent and lightweight nanocomposite substrate of poly(methyl methacrylate-co-acrylonitrile)/MWCNT for optoelectronic applications: an experimental and theoretical insight. J Mater Sci 56(30):17040–17061. https://doi.org/10.1007/S10853-021-06390-3/FIGURES/17

    Article  CAS  Google Scholar 

  88. Saini A et al (2021) Microdesigned nanocellulose-based flexible antibacterial aerogel architectures impregnated with bioactive Cinnamomum cassia. ACS Appl Mater Interfaces 13(4):4874–4885. https://doi.org/10.1021/acsami.0c20258

    Article  CAS  Google Scholar 

  89. Singh V, Patra S, Murugan NA, Toncu DC, Tiwari A (2022) Recent trends in computational tools and data-driven modeling for advanced materials. Mater Adv 4069–4087. https://doi.org/10.1039/d2ma00067a

  90. Shymchenko AV, Tereshchenko VV, Ryabov YA, Salkutsan SV, Borovkov AI (2017) Review of the computational approaches to advanced materials simulation in accordance with modern advanced manufacturing trends. Mater Phys Mech 32(3):328–352

    CAS  Google Scholar 

  91. Sethi SK, Manik G (2021) A combined theoretical and experimental investigation on the wettability of MWCNT filled PVAc-g-PDMS easy-clean coating. Prog Org Coat 151:106092. https://doi.org/10.1016/j.porgcoat.2020.106092

    Article  CAS  Google Scholar 

  92. Sethi SK, Manik G (2018) Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: a review. Polym Plast Technol Eng 57(18):1932–1952. https://doi.org/10.1080/03602559.2018.1447128

    Article  CAS  Google Scholar 

  93. Sethi SK, Shankar U, Manik G (2019) Fabrication and characterization of non-fluoro based transparent easy-clean coating formulations optimized from molecular dynamics simulation. Prog Org Coat 136. https://doi.org/10.1016/j.porgcoat.2019.105306

  94. Sethi SK, Gogoi R, Manik G (2021) Plastics in self-cleaning applications. In: Reference module in materials science and materials engineering. https://doi.org/10.1016/B978-0-12-820352-1.00113-9

  95. Sethi SK, Kadian S, Manik G (2021) A review of recent progress in molecular dynamics and coarse-grain simulations assisted understanding of wettability. Arch Comp Methods Eng 1:1–27. https://doi.org/10.1007/S11831-021-09689-1

  96. Sethi SK, Singh M, Manik G (2020) A multi-scale modeling and simulation study to investigate the effect of roughness of a surface on its self-cleaning performance. Mol Syst Des Eng 5(7):1277–1289. https://doi.org/10.1039/d0me00068j

    Article  CAS  Google Scholar 

  97. Sethi SK, Singh M, Manik G (2020) A multi-scale modeling and simulation study to investigate the effect of roughness of a surface on its self-cleaning performance. Mol Syst Des Eng. https://doi.org/10.1039/D0ME00068J

    Article  Google Scholar 

  98. Sethi SK, Soni L, Manik G (2018) Component compatibility study of poly(dimethyl siloxane) with poly(vinyl acetate) of varying hydrolysis content: an atomistic and mesoscale simulation approach. J Mol Liq 272:73–83. https://doi.org/10.1016/J.MOLLIQ.2018.09.048

    Article  CAS  Google Scholar 

  99. Sethi SK, Shankar U, Manik G (2019) Fabrication and characterization of non-fluoro based transparent easy-clean coating formulations optimized from molecular dynamics simulation. Prog Org Coat 136:105306. https://doi.org/10.1016/j.porgcoat.2019.105306

    Article  CAS  Google Scholar 

  100. Sethi SK, Manik G, Sahoo SK (2019) Fundamentals of superhydrophobic surfaces. In Superhydrophobic polymer coatings. Elsevier, pp 3–29. https://linkinghub.elsevier.com/retrieve/pii/B9780128166710000011. Accessed Aug 29 Aug 2019

  101. Sethi SK, Gogoi R, Verma A, Manik G (2022) How can the geometry of a rough surface affect its wettability?–a coarse-grained simulation analysis. Prog Org Coat 172:107062. https://doi.org/10.1016/J.PORGCOAT.2022.107062

    Article  CAS  Google Scholar 

  102. Sethi SK, Soni L, Shankar U, Chauhan RP, Manik G (2020) A molecular dynamics simulation study to investigate poly(vinyl acetate)-poly(dimethyl siloxane) based easy-clean coating: an insight into the surface behavior and substrate interaction. J Mol Struct 1202:127342. https://doi.org/10.1016/j.molstruc.2019.127342

    Article  CAS  Google Scholar 

  103. Sethi SK, Kadian S, Anubhav G, Chauhan RP, Manik G (2020) Fabrication and analysis of ZnO quantum dots based easy clean coating: a combined theoretical and experimental investigation. ChemistrySelect 5(29):8942–8950. https://doi.org/10.1002/slct.202001092

  104. Montay G, Cherouat A, Nussair A, Lu J (2004) Residual stresses in coating technology. J Mater Sci Technol 20:81–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahidul Islam Shuvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tusher, M.M.H., Imam, A., Shuvo, M.S.I. (2023). Future and Challenges of Coating Materials. In: Verma, A., Sethi, S.K., Ogata, S. (eds) Coating Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3549-9_11

Download citation

Publish with us

Policies and ethics