Skip to main content

Materials Development

  • Chapter
  • First Online:
Innovative Structural Materials

Abstract

It is well known that the trade-off relationship exists between strength and ductility in metallic materials. We developed technologies to obtain materials with both high strength and high ductility: innovative steel sheets with tensile strength of 1.5 GPa and elongation of 20% and high-strength innovative 5000 series and 6000 series aluminum alloys with Sc precipitates. For innovative magnesium alloys, we have completed the evaluation of a prototype hermetic fatigue test structure for a full-size (5 m long) high-speed rail car using a flame-retardant magnesium alloy. For innovative titanium alloys, we developed innovative refining and manufacturing processes to reduce production costs. Thermoset carbon fiber reinforced plastic requires heating and curing in a high-temperature autoclave for several hours, resulting in an increase of the production costs and limited use in automotive applications. The LFT-D (Long Fiber Thermoplastics-Direct) process, in which thermoplastic resin and relatively long carbon fiber are mixed and pressed at high speed, was adopted to develop a high productive manufacturing process, and trial prototypes of chassis and floor panels were manufactured on trial. We succeeded in introducing innovative carbon fibers, by developing new precursor compounds to get flame resistant polymer threads for pre-carbonization, and also by developing new microwave carbonization process technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Side column: Indicates the main vertical columns of the body structure.

  2. 2.

    In 2025, the industrial scale will be expanded to 284.5 billion yen with a breakdown of 194.9 billion yen for CFRP molded items, 62.6 billion yen for carbon fiber, and 27 billion yen for resin material (predicted by the Yano Research Institute Ltd. in 2014).

References

  1. H. Yada, Ferrum 1, 185–190 (1996)

    Google Scholar 

  2. M. Takahashi, Ferrum 24, 795–801 (2019)

    CAS  Google Scholar 

  3. M. Tanino, S. Suzuki, Science of Steel Material (Uchida Rokakuho Publishing Co., Ltd, 2001)

    Google Scholar 

  4. Japanese Standards Association: JIS G 3135:2018 “Cold-reduced high strength steel sheet and strip with improved formability for automobile uses”

    Google Scholar 

  5. K. Saito, Materia Jpn. 53, 584–588 (2014)

    Article  Google Scholar 

  6. T. Maki, Microstructure Control of Steel: Principle and Method (Uchida Rokakuho Publishing Co., Ltd, 2015)

    Google Scholar 

  7. T. Maki, Ferrum 13, 544–548 (2008)

    CAS  Google Scholar 

  8. Z. Nishiyama, Martensite Transformation: Basics (MaruzenJunkudo Bookstores Co., Ltd., 1971)

    Google Scholar 

  9. Z. Nishiyama, Martensite Transformation: Application (MaruzenJunkudo Bookstores Co., Ltd., 1974)

    Google Scholar 

  10. K. Tsuzaki, Ferrum 1, 842–846 (1996)

    CAS  Google Scholar 

  11. T. Maki, Ferrum 3, 781–786 (1998)

    Google Scholar 

  12. Y. Hosoya, Y. Funakawa, HITEN for automobiles—its Birth and Footprint of Evolution (JFE 21st Century Foundation, 2008)

    Google Scholar 

  13. S. Hiwatashi, Ferrum 27, 6–14 (2022)

    CAS  Google Scholar 

  14. H. Kimura, T. Okubo, T. Shinmiya, Ferrum 27, 15–20 (2022)

    CAS  Google Scholar 

  15. H. Kawasaki, Ferrum 22, 373–380 (2017)

    CAS  Google Scholar 

  16. A. Yoshitake, in 2nd Next Generation Automobiles Open Symposium “For Deepening of Ultra-Lightweight Technology” Documents (2012)

    Google Scholar 

  17. S. Takaki, Ferrum 13, 304–308 (2008)

    CAS  Google Scholar 

  18. T. Maki, Materia Jpn. 48, 206–211 (2009)

    Article  CAS  Google Scholar 

  19. S. Morito, T. Maki, Materia Jpn. 40, 629–633 (2001)

    Article  CAS  Google Scholar 

  20. V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, Trans. ASM 252–259 (1967)

    Google Scholar 

  21. I. Tamura, Tetsu to Hagane 56, 429–445 (1970)

    Google Scholar 

  22. K. Sugimoto, Ferrum 15, 183–188 (2010)

    CAS  Google Scholar 

  23. H. Kanata, Flexible and Strong Steel Materials: Developmental Front Line for Innovative Metallic Material for Structures (NTS Inc., 2016)

    Google Scholar 

  24. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Materia 51, 2611–2622 (2003)

    Google Scholar 

  25. Innovative Structural Materials R&D Project. https://www.nedo.go.jp/content/100749300.pdf

  26. Vehicle Technologies Office, Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, Lightweight Materials 2016 Annual Progress Report (2017). https://www.energy.gov/sites/default/files/2017/11/f46/FY_2016_Lighweight_APR.pdf

  27. T. Murakami, in Conference on Hamamatsu Super HITEN Workshop (2018)

    Google Scholar 

  28. T. Murakami, Kobe Steel Eng. Rep. 69, 29–32 (2019)

    CAS  Google Scholar 

  29. T. Yamashita, Y. Tanaka, M. Nagoshi, K. Ishida, Sci. Rep. 6, 29825 (2016)

    Article  CAS  Google Scholar 

  30. Aluminium Handbook, 8th edn. (Japan Aluminium Association, 2017)

    Google Scholar 

  31. UACJ Automobile Technology. https://uacj-automobile.com/jp/index.html

  32. For example, S. Fijikawa, J. Jpn. Inst. Light Metals 49, 128–144 (1999)

    Google Scholar 

  33. A.F. Castle, G. Lang, Aluminium 53, 535–539 (1977)

    CAS  Google Scholar 

  34. N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Acta Mater. 57, 4198–4208 (2009)

    Article  CAS  Google Scholar 

  35. E.H. Dix Jr., W.A. Anderson, M.B. Shumaker, Corrosion 15, 55t–62t (1959)

    Article  CAS  Google Scholar 

  36. K. Ohori, H. Watanabe, Y. Takeuchi, J. Jpn. Inst. Light Metals 33, 718–728 (1983)

    Article  Google Scholar 

  37. T. Morihisa, T. Minoda, N. Omura, Y. Totsugi, Y. Kojima, Y. Watanabe, H. Tanaka, J. Jpn. Inst. Light Metals 69, 9–14 (2019)

    Article  Google Scholar 

  38. K. Nakamura, K. Neishi, K. Kaneko, M. Nakagaki, Z. Horita, Mater. Sci. Forum 503–504, 385–390 (2006)

    Google Scholar 

  39. H. Ohara, in Advances in the Development of Cutting-Edge Technology of Magnesium Alloys and Their Applications Supervisor eds. by Y. Kawamura, Y. Chino (CMC Publishing Co., Ltd.,), pp. 8–25

    Google Scholar 

  40. Y. Chino, M. Enoki, M. Taguchi, H. Mori, T. Ishikawa, K. Ito, E. Yukutake, K. Shimizu, F. Kido, I. Nakatsugawa, K. Yamada, T. Horiya, Mater. Sci. Technol. 92(534), 541 (2022)

    Google Scholar 

  41. H. Mori, K. Fujino, K. Kurita, Y. Chino, N. Saito, M. Noda, H. Komai, H. Ohara, Materia 52, 484–490 (2013)

    CAS  Google Scholar 

  42. S. Akiyama, H. Ueno, M. Sakamoto, H. Hirai, A. Kitahara, Materia 39, 72–74 (2000)

    Google Scholar 

  43. A. Chapuis, J.H. Driver, Acta Mater. 59(2011), 1986 (1994)

    Google Scholar 

  44. Y. Chino, H. Iwasaki, M. Mabuchi, Mater. Sci. Eng. A 466(90), 95 (2007)

    Google Scholar 

  45. P. Yang, Y. Yu, L. Chen, W. Mao, Scr. Mater. 50(1163), 1168 (2004)

    Google Scholar 

  46. T. Nakata, T. Mezaki, R. Ajima, C. Xu, K. Oh-ishi, K. Shimizu, S. Hanaki, T.T. Sasaki, K. Hono, S. Kamado, Scr. Mater. 101, 28–31 (2015)

    Google Scholar 

  47. Y. Chino, K. Shimizu, M. Noda, K. Yoshida, Y. Ueda, T. Ishikawa, M. Taguchi, K. Yamada, T. Horiya, H. Mori, Mater. Sci. Technol. 69, 22–29 (2019)

    CAS  Google Scholar 

  48. X. Huang, Y. Chino, M. Yuasa, H. Ueda, M. Inoue, F. Kido, T. Matsumoto, Mater. Sci. Eng. A 679, 162–171 (2017)

    Article  CAS  Google Scholar 

  49. X. Huang, Y. Chino, H. Ueda, M. Inoue, F. Kido, T. Matsumoto, J. Mater. Res. 34, 3725–3734 (2019)

    Article  CAS  Google Scholar 

  50. K. Takahashi, T. Shiraiwa, M. Enoki, K. Ito, E. Yukutake, J. Acoust. Emiss. 36, S103–S106 (2019)

    Google Scholar 

  51. N. Saito, Y. Ueda, F. Kido, M. Inoue, T. Matsumoto, K. Ueda, T. Ishikawa, Y. Chino, J. Jpn. Inst. Light Metals 72, 8–15 (2022)

    Article  CAS  Google Scholar 

  52. N. Saito, Y. Ueda, F. Kido, M. Inoue, T. Matsumoto, E. Yukutake, Y. Chino, J. Jpn. Inst. Light Metals 72, 133–138 (2022)

    Article  CAS  Google Scholar 

  53. M. Enoki, Mater. Sci. Technol. 92, 542–548 (2022)

    CAS  Google Scholar 

  54. I. Nakatsugawa, Y. Chino, T. Yamashita, K. Nishikawa, Y. Taniguchi, K. Yamada, in Outline of the 140th Conference of Japan Institute of Light Metals (Springtime, 2021), pp. 163–164

    Google Scholar 

  55. Y. Chino, K. Shimizu, F. Kido, T. Ishikawa, M. Taguchi, H. Mori, T. Horiya, Magnesium Technology, ed. by P. Maier et al. (TMS, 2022), pp. 29–35

    Google Scholar 

  56. M. Taguchi, T. Ishikawa, J. Light. Met. Weld. 60, 9–14 (2022)

    CAS  Google Scholar 

  57. M. Taguchi, T. Ishikawa, J. Light. Met. Weld. 60, 47–51 (2022)

    CAS  Google Scholar 

  58. M. Yagi, J. Soc. Automot. Eng. Jpn. 45–6, 5–11 (1991)

    Google Scholar 

  59. K. Yamazaki, J. Automot. Technol. 8–6, 26–31 (2021)

    Google Scholar 

  60. Y. Chino, in Advances in the Development of Cutting-Edge Technology of Magnesium Alloys and Their Applications Supervisor, eds. by Y. Kawamura, Y. Chino (CMC Publishing Co., Ltd., 2020), pp.1–7, 208–213

    Google Scholar 

  61. Y. Chino, J. Jpn. Soc. Technol. Plast. 58, 1074–1078 (2017)

    CAS  Google Scholar 

  62. Y. Chino, X. Huang, K. Suzuki, J. Jpn. Inst. Metals Mater. 81, 49–54 (2017)

    Google Scholar 

  63. Y. Chino, M. Mabuchi, J. Jpn. Inst. Light Metals 51, 498–502 (2001)

    Article  Google Scholar 

  64. J. Koike, T. Miyamura, J. Jpn. Inst. Light Metals 54, 460–464 (2004)

    Article  CAS  Google Scholar 

  65. T.T. Sasaki, M.Z. Bian, Z.H. Li, K. Hono, JOM 73, 1471–1483 (2021)

    Article  CAS  Google Scholar 

  66. National Institute of Advanced Industrial Science and Technology: Press release, New development of “ZA-series new magnesium alloy rolled material” with superior room temperature forming property and strength, and high thermal conductivity (2021)

    Google Scholar 

  67. X.S. Huang, M.Z. Bian, I. Nakatsugawa, Y. Chino, M. Sato, K. Yamazaki, F. Kido, H. Ueda, M. Inoue, J. Alloys Compd. 887, 161394 (2021)

    Article  CAS  Google Scholar 

  68. Y. Chino, X. Huang, T. Miki, M. Seki, Plastos 4, 731–736 (2021)

    Google Scholar 

  69. H. Fujii, in Lightweight Materials for Automobiles—All processes from Developments to Applications, ed. by H. Fukutomi (CMC Publishing Co. Ltd., 2012), pp.173–183

    Google Scholar 

  70. Aerospace industry database (The Society of Japanese Aerospace Companies, Inc., 2021).

    Google Scholar 

  71. S. Murakami, Titanium. 63(2), 104–107 (2015)

    Google Scholar 

  72. The Japan Carbon Fiber Manufacturers Association LCA model. http://www.carbonfiber.gr.jp/tech/lca.html

  73. FY 2016 to 2020 progress report, Research and development for innovative structural materials, theme 51, Basic R&D for Carbon Fiber Innovation, New Energy and Industrial Technology Development Organization (2021)

    Google Scholar 

  74. Statistic Bureau, Ministry of Internal Affairs and Communications website “Possession situation of major consumer durables”. https://www.stat.go.jp/data/zensho/2004/taikyu/gaiyo1.htm. Accessed 8 Aug 2022

  75. Robert Norris, Felix Paulauskas, Amit Naskar, Michael Kaufman, Ken Yarborough, “CRADA Final Report for CRADA Number NFE-10–02991 “Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies,” US Department of Energy (issued on October 1, 2013). https://www.osti.gov/biblio/1129561. Accessed 8 Aug 2022.

  76. US Patent 7,824,495 B1

    Google Scholar 

  77. J. Sugiyama, Y. Suzuki, T. Toki, H. Zushi, S. Tanaka, K. Yagi, R. Minegishi, H. Hatori, in Collection of abstracts of the 13th Japan Society of Electromagnetic Wave Energy Applications symposium, 1B01 (Tsukuba City, Ibaraki Prefecture, 2019), pp. 40–41

    Google Scholar 

  78. Japanese Patent No.6528181

    Google Scholar 

  79. Japanese Patent No.6469212

    Google Scholar 

  80. J. Sugiyama, Y. Suzuki, T. Toki, H. Zushi, S. Tanaka, K. Yagi, R. Minegishi, H. Hatori, in Collection of abstracts of the 15th Japan Society of Electromagnetic Wave Energy Applications symposium, 1A08 held online (2021), pp. 52–53

    Google Scholar 

  81. Y. Suzuki, T. Toki, J. Sugiyama, H. Hatori, Reinf. Plast. 67(11), 474–477 (2021)

    CAS  Google Scholar 

  82. H. Hatori, “Basic R&D for carbon fiber innovation, in FY 2020 Progress Report Poster Collection for Research and Development for Innovative Structural Materials (Innovative Structural Materials Association, 2021), pp. 44–45

    Google Scholar 

  83. H. Hatori, “Basic R&D for carbon fiber innovation,” in FY 2020 Progress Report Program and Presentation Overview for Research and Development For Innovative Structural Materials (Innovative Structural Materials Association, 2021), pp. 44–45

    Google Scholar 

  84. G. Ben et al., Sci. Eng. Compos. Mater. 22(6), 633–641 (2015)

    Article  CAS  Google Scholar 

  85. T. Yamashina, A. Hirabayashi, N. Hirayama, M. Terada, Y. Kimoto, in “Study for the continuous molding method of CFRTP tape using in-situ polymerized PA6 as Matrix” (College of Industrial Technology, Nihon University 54th Academic Lectures Summary, 2021), pp. 400–401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Hyodo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hyodo, T. et al. (2023). Materials Development. In: Kishi, T. (eds) Innovative Structural Materials. Springer Series in Materials Science, vol 336. Springer, Singapore. https://doi.org/10.1007/978-981-99-3522-2_2

Download citation

Publish with us

Policies and ethics