Skip to main content

Global Biodiversity Decline and Loss from Agricultural Intensification Through Agrochemical Application

  • Chapter
  • First Online:
One Health Implications of Agrochemicals and their Sustainable Alternatives

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 34))

  • 314 Accesses

Abstract

To meet global food demands for an ever-increasing human population, in the face of changing patterns of temperature and precipitation, agricultural intensification has been on the rise. The use of agrochemicals for agricultural intensification has immediate and long-term effects on global biodiversity and has caused significant changes in the functioning of agroecosystems. This chapter discusses global biodiversity decline and loss due to agricultural intensification through agrochemical application and points out the likely drivers, their mechanisms, and the ramifications of these losses. In the past half-century, concerns have grown over the widespread usage of agrochemicals and how they end up in the ecosystem. Diverse negative impacts, such as contamination of soil, water, turf, and other vegetation, have been associated with the improper use of agrochemicals. Moreover, biotransformation and bioaccumulation reduce environmental quality and health, threaten biodiversity, and ultimately lead to a reduction of ecosystem services like food, water, timber, fibers, and medicine on which all of life depends. Stakeholders are becoming more concerned about ensuring that farmers can access pertinent information about agrochemicals and the need for global agrochemical regulation. Though agricultural intensification requires less amount of land for food production which may protect local biodiversity by preserving habitats, it can have predicted and unpredicted environmental consequences including the reduction of the agroecology. Since global biodiversity forms an important component of the natural resource base for farming, it needs to be safeguarded to support and maintain the increased productivity for a sustainable food supply. This calls for sustainable agricultural intensification practices and a conscious move away from agrochemical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Agricultural Pesticide Committee

CIC:

Chemical Import Control

CM:

Chemical Monitoring

Codex:

Codex Alimentarius Commission

DAFF:

Department of Agriculture, Forestry and Fisheries

DDT:

Dichlorodiphenyltrichloroethane

EAA:

Environmental Affairs Agency

EAD:

Environmental Affairs Department

EASAC:

European Academy of Sciences

EMA:

Environment Management Act

EPA:

Environmental Protection Agency

ESA:

Endangered Species Act

EU:

European Union

FFDCA:

Federal Food, Drug, and Cosmetic Act

FIFRA:

Federal Insecticide, Fungicide and Rodenticide Act

FQPA:

Food Quality Protection Act

MBS:

Malawi Bureau of Standards

MRLs:

Maximum Residue Limits

NAFDAC:

National Agency for Food and Drug Administration and Control

NAFTA:

North American Free Trade Agreement

Ocs:

Organochlorine

OPs:

Organophosphate

PCB:

Pesticide Control Board

PCPA:

Pest Control Products Act

PMRA:

Pest Management Regulatory Agency

PPRSD:

Plant Protection and Regulatory Services Directorate

PRB:

Population Reference Bureau

PRIA:

Pesticide Registration Improvement Act

UNEP:

United Nations Environmental Programme

VDP:

Veterinary Drugs and Pesticides

References

  • Aavik T, Liira J (2010) Quantifying the effect of organic farming, field boundary type and landscape structure on the vegetation of field boundaries. Agric Ecosyst Environ 135:178–186

    Google Scholar 

  • Abdel Megeed M (2017) Pesticide management in Egypt. Presentation, Agricultural Pesticide Committee, Ministry of Agriculture and Land Reclamation, Cairo

    Google Scholar 

  • Abdi A, Wally A (2018) Food and agricultural import regulations and standards report, FAIRS Annual Country Report, USDA

    Google Scholar 

  • Adhikari PR (2017) An overview of pesticide management in Nepal. J Agric Environ 18:95–105

    Google Scholar 

  • Aiello D, Vitale A, Alfenas RF, Alfenas AC, Cirvilleri G, Polizzi G (2018) Effects of sublabeled rates of dazomet and metam-sodium applied under low-permeability films on calonectria microsclerotia survival. Plant Dis 102:782789

    Google Scholar 

  • Aikpokpodion PE, Lajide AF, Aiyesanmi AF, Lacorte S (2012) Residues of dichlorodiphenyltrichloroethane (DDT) and its metabolites in cocoa beans from three cocoa ecological zones in Nigeria. Eur J Appl Sci 4(2):52–57

    Google Scholar 

  • Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagner CC, Umbuzeiro GA (2016) Pesticides in Brazilian freshwaters: a critical review. Environ Sci: Processes Impacts 18(7):779–787

    CAS  Google Scholar 

  • Ali S, Ullah MI, Sajjad A, Shakeel Q, Hussain A (2021) Environmental and health effects of pesticide residues. In: Sustainable agriculture reviews, vol 48. Springer, Cham, pp 311–336

    Google Scholar 

  • Amizadeh M, Safari-Kamalabadi M, Askari-Saryazdi G, Amizadeh M, Reihani-Kermani H (2017) Pesticide exposure and head, and neck cancers: a case-control study in an agricultural region. Iran J Otorhinolaryngol 29(94):275285

    Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260. https://doi.org/10.1016/j.agee.2007.07.011

    Article  CAS  Google Scholar 

  • Asogwa EU, Dongo LN (2009) Problems associated with pesticide usage and application in Nigerian cocoa production: a review. Afr J Agric Res 4:675–683

    Google Scholar 

  • Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci 110:11039–11043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188

    Google Scholar 

  • Biddinger DJ, Robertson JL, Mullin C, Frazier J, Ashcraft S, Rajotte EG, Joshi NK, Vaughn M (2013) Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS One 8:e72587. https://doi.org/10.1371/journal.pone.0072587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botías C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill EM, Goulson D (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ Sci Technol 49:12731–12740. https://doi.org/10.1021/acs.est.5b03459

    Article  CAS  PubMed  Google Scholar 

  • Botías C, David A, Hill EM, Goulson D (2017) Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ Pollut 222:73–82

    PubMed  Google Scholar 

  • Boyd DR (2006) The food we eat: an international comparison of pesticide regulations. David Suzuki Foundation, Vancouver

    Google Scholar 

  • Brazilian Ministry of Agriculture (2011) Regional perspectives: current and future challenges in pesticide regulations and management. In: First international conference for heads of pesticides

    Google Scholar 

  • Brühl CA, Zaller JG (2019) Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front Environ Sci 7:177

    Google Scholar 

  • Budnik LT, Fahrenholtz S, Klotha S, Baur X (2010) Halogenated hydrocarbon pesticides and other volatile organic contaminants provide analytical challenges in global trading. J Environ Monit 12:936942

    Google Scholar 

  • Buralli RJ, Ribeiro H, Leão RS, Marques RC, Guimarães JRD (2019) Data on pesticide exposure and mental health screening of family farmers in Brazil. Data Brief 103993 (in press). https://doi.org/10.1016/j.dib.2019.103993

  • Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907

    CAS  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Nat Acad Sci 114(30):E6089–E6096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaia-Hernandez AC, Keller A, Wachter D, Steinlin C, Camenzuli L, Hollender J, Krauss M (2017) Long-term persistence of pesticides and TPs in archived agricultural soil samples and comparison with pesticide application. Environ Sci Technol 51:10642–10651. https://doi.org/10.1021/acs.est.7b02529

    Article  CAS  PubMed  Google Scholar 

  • Coria J, Elgueta S (2022) Towards safer use of pesticides in Chile. Environ Sci Pollut Res 29(16):22785–22797

    Google Scholar 

  • Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–867

    CAS  PubMed  Google Scholar 

  • Cuevas L (2010) Argentina and Chile-overview on chemical control legislation (labeling, SDS, existing and new substances) and aspects of GHS. Chemcon, The Americas

    Google Scholar 

  • Culbreth ME, Harrill JA, Freudenrich TM, Mundy WR, Shafer TJ (2012) Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Neurotoxicology 33:1499–1510. https://doi.org/10.1016/j.neuro.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  • Daily GC (1997) Introduction: what are ecosystem services? In: Daily GC (ed) Nature’s service: societal dependence on natural services. Island Press, Washington DC, pp 1–10

    Google Scholar 

  • David A, Botías C, Abdul-Sada A, Nicholls E, Rotheray EL, Hill EM, Goulson D (2016) Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ Int 88:169–178. https://doi.org/10.1016/j.envint.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  • Devillers J, Decourtye A, Budzinskid H, Pham-Delegue MH, Cluzeau S, Maurin G (2007) Comparative toxicity and hazards of pesticides to Apis and non-Apis bees. A chemometrical study. SAR QSAR Environ Res 14:389–403. https://doi.org/10.1080/10629360310001623980

    Article  CAS  Google Scholar 

  • Diaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trend Ecol Evol 16:646–655. https://doi.org/10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  • Duke SO (1990) Overview of herbicide mechanisms of action. Environ Health Perspect 87:263271

    Google Scholar 

  • Durant JL (2020) Ignorance loops: how non-knowledge about bee-toxic agrochemicals is iteratively produced. Soc Stud Sci. https://doi.org/10.1177/0306312720923390

  • EASAC (2015) Ecosystems services, agriculture and neonicotinoids. EASAC, London

    Google Scholar 

  • Elahi E, Weijun C, Zhang H, Nazeer M (2019) Agricultural intensification and damages to human health in relation to agrochemicals: application of artificial intelligence. Land Use Policy 83:461–474

    Google Scholar 

  • ElSafoury H (2020) Legislative status of pesticides in Egypt. Technical report under action A1 of the Egyptian Vulture New LIFE project (LIFE16 NAT/BG/000874). Nature Conservation Egypt, Cairo

    Google Scholar 

  • Emmerson M, Morales MB, Oñate JJ, Batary P, Berendse F, Liira J et al (2016) How agricultural intensification affects biodiversity and ecosystem services. Adv Ecol Res 55:43–97

    Google Scholar 

  • EPA (2015) Pesticide regulation. Available from: http://npic.orst.edu/reg/epareg.html

  • Erinle KO, Ogwu MC, Evivie SE, Zaheer MS, Ogunyemi SO, Adeniran SO (2021) Impacts of COVID-19 on agriculture and food security in developing countries: potential mitigation strategies. CAB Rev 16(16):1–16. https://doi.org/10.1079/PAVSNNR202116016

    Article  Google Scholar 

  • European Parliament (2009) Regulation (EC) No. 1107/2009 concerning the placing of plant protection products on the market. Official Journal of the European Union. 50p. Available online at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0001:0050:EN:PDF

  • Evivie ER, Ogwu MC, Cang W, Xu R, Li J (2019) Progress and prospects of glucosinolate pathogen resistance in some brassica plants. J Appl Nat Sci 11(2):556–567. https://doi.org/10.31018/jans.v11i2.2117

    Article  CAS  Google Scholar 

  • Evivie SE, Ogwu MC, Ebabhamiegbebho PA, Abel ES, Imaren JO, Igene JO (2020) Packaging and the Nigerian food industry: challenges and opportunities. In: Ogunlade CA, Adeleke KM, Oladejo MT (eds) Food technology and culture in Africa. Reamsworth Publishing, Ibadan, pp 28–99

    Google Scholar 

  • Faloni KB, Tijani AA, Kehinde AD (2022) Economic impact of cocoa farmers’ compliance to EU pesticide regulations in Osun State, Nigeria. Agric Conspec Sci 87:165–180

    Google Scholar 

  • FAO (2012) Guidance for harmonizing pesticide regulatory management in Southeast Asia

    Google Scholar 

  • FAO (2013) Advancement of pesticide regulatory management in Asia

    Google Scholar 

  • Ferrario C, Finizio A, Villa S (2017) Legacy and emerging contaminants in meltwater of three alpine glaciers. Sci Total Environ 574:350–357. https://doi.org/10.1016/j.scitotenv.2016.09.067

    Article  CAS  PubMed  Google Scholar 

  • Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc B 363:777–787

    Google Scholar 

  • Fishel FM (2009) Pest management and pesticides: a historical perspective. Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Publication P I219, pp 1–5

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR et al (2005) Global consequences of land use. Science 309(5734):570–574

    CAS  PubMed  Google Scholar 

  • Fuller RJ, Gregory RD, Gibbons DW, Marchant JH, Wilson JD, Baillie SR, Carter N (1995) Population declines and range contractions among lowland farmland birds in Britain. Conserv Biol 9:1425–1441

    Google Scholar 

  • Galon L, Bragagnolo L, Korf EP, dos Santos JB, Barroso GM, Ribeiro VHV (2021) Mobility and environmental monitoring of pesticides in the atmosphere—a review. Environ Sci Pollut Res 28:32236–32255. https://doi.org/10.1007/s11356-021-14258-x

    Article  CAS  Google Scholar 

  • Ganguly RK, Mukherjee A, Chakraborty SK, Verma JP (2021) Impact of agrochemical application in sustainable agriculture. In: Verma JP (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 15–24. https://doi.org/10.1016/b978-0-444-64325-4.00002-x.10

    Chapter  Google Scholar 

  • Garcia A (2020) The environmental impacts of agricultural intensification. Technical Note N.9. SPIA, Rome

    Google Scholar 

  • Garthwaite DG, Hudson S, Barker I, Parrish G, Smith L, Pietravalle S (2013). Pesticide usage report. Arable Crops in the United Kingdom, vol 2012, 89 pp.

    Google Scholar 

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Part T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Onate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hanke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    CAS  Google Scholar 

  • Geissen V, Silva V, Lwanga EH, Beriot N, Oostindie K, Bin Z, Pyne E, Busink S, Zomer P, Mol H, Ritsema CJ (2021) Cocktails of pesticide residues in conventional and organic farming systems in Europe—legacy of the past and turning point for the future. Environ Pollut 278:116827. https://doi.org/10.1016/j.envpol.2021.116827

    Article  CAS  PubMed  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22:103–118

    CAS  Google Scholar 

  • Gill HK, Garg H (2014) Pesticides: environmental impacts and management strategies. In: Larramendy ML, Soloneski S (eds) Pesticides—toxic aspects. IntechOpen. https://doi.org/10.5772/57399

    Chapter  Google Scholar 

  • Godfray HCJ, Blacquiere T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, Vanbergen AJ, McLean AR (2014) A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc R Soc Lond B 281(1786):20140558

    Google Scholar 

  • Goswami M, Bhattacharyya P, Mukherjee I, Tribedi P (2017) Functional diversity: an important measure of ecosystem functioning. Adv Microb 7:82–93

    Google Scholar 

  • Government of Canada (2013) The regulation of pesticides in Canada. Available from: www.hc-sc.gc.ca

  • Government of Malawi (2000) Pesticide act. Malawi Government, Lilongwe

    Google Scholar 

  • Government of Malawi (2003) Consumer protection act. Malawi Government, Lilongwe

    Google Scholar 

  • Government of Malawi (2013) Water resources act (controlled water areas). Malawi Government, Lilongwe

    Google Scholar 

  • Government of Malawi (2017) Environment management act. Malawi Government, Lilongwe

    Google Scholar 

  • Government of South Africa (2010) Pesticide management policy for South Africa. Department of Agriculture, Johannesburg

    Google Scholar 

  • Guerrero I, Martınez P, Morales MB, Onate JJ (2010) Agricultural factors influencing bird, carabid and weed richness in a high conservation value, low-intensity cereal system. Agric Ecosyst Environ 138:103–108

    Google Scholar 

  • Haile B, Cox C, Azzarri C, Koo J (2017) Adoption of sustainable intensification practices: evidence from maize-legume farming system in Tanzania. In: IFFPRI discussion paper 01696. International Food Policy Research Institute

    Google Scholar 

  • Handford CE, Elliott CT, Campbell K (2015) A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr Environ Assess Manag 11(4):525–536. https://doi.org/10.1002/ieam.1635

    Article  PubMed  Google Scholar 

  • Hashemi SM, Rostami R, Hashemi MK, Damalas CA (2012) Pesticide use and risk perceptions among farmers in Southwest Iran. Hum Ecol Risk Assess 2012(18):456–470

    Google Scholar 

  • Hilber I, Mäder P, Schulin R, Wyss GS (2008) Survey of organochlorine pesticides in horticultural soils and there grown Cucurbitaceae. Chemosphere 73:954–961. https://doi.org/10.1016/j.chemosphere.2008.06.053

    Article  CAS  PubMed  Google Scholar 

  • Hladik ML, Vandever M, Smalling KL (2016) Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci Total Environ 542:469–477. https://doi.org/10.1016/j.scitotenv.2015.10.077

    Article  CAS  PubMed  Google Scholar 

  • Hodgson JG, Thompson K, Wilson PJ, Bogaard A (1998) Does biodiversity determine ecosystem function? The Ecotron experiment reconsidered. Funct Ecol 12(5):843–848

    Google Scholar 

  • Hoferkamp L, Hermanson MH, Muir DC (2010) Current use pesticides in Arctic media; 2000–2007. Sci Total Environ 408:2985–2994. https://doi.org/10.1016/j.scitotenv.2009.11.038

    Article  CAS  PubMed  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodege DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Google Scholar 

  • Humann-Guilleminot S, Binkowski ŁJ, Jenni L, Hilke G, Glauser G, Helfenstein F (2019) A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J Appl Ecol 56:1502–1514. https://doi.org/10.1111/1365-2664.13392

    Article  CAS  Google Scholar 

  • Hvězdová M, Kosubová P, Košíková M, Scherr KE, Šimek Z, Brodský L, Šudoma M, Škulcová L, Sáňka M, Svobodová M, Krkošková L, Vašíčková J, Neuwirthová N, Bielská L, Hofman J (2018) Currently and recently used pesticides in central European arable soils. Sci Total Environ 613:361–370. https://doi.org/10.1016/j.scitotenv.2017.09.049

    Article  CAS  PubMed  Google Scholar 

  • Islam MN, Bint-E-Naser SF, Khan MS (2017) Pesticide food laws and regulations. In: Khan M, Rahman M (eds) Pesticide residue in foods. Springer, Cham. https://doi.org/10.1007/978-3-319-52683-6_3

    Chapter  Google Scholar 

  • Issa FO (2021) Human health and environmental consequences of non-adoption of recommended agrochemical practices among crop farmers in Kaduna and Ondo States, Nigeria. J Agric Sustain Dev 4(1):47–55

    Google Scholar 

  • Jabbar A, Wu Q, Peng J, Zhang J, Imran A, Yao L (2020) Synergies and determinants of sustainable intensification practices in Pakistan agriculture. Landscape 9:10. https://doi.org/10.33390/Land9040110

    Article  Google Scholar 

  • Khan MS, Rahman MS (2017) Pesticide residue in foods—pesticide food laws and regulations. https://doi.org/10.1007/978-3-319-52683-6

  • Kishore GM, Shah DM (1988) Amino acid biosynthesis inhibitors as herbicides. Annu Rev Biochem 57:627663

    Google Scholar 

  • Koirala P, Dhakal S, Tamrakar AS (2009) Pesticide application and food safety issue in Nepal. J Agric Environ 10:128–132

    Google Scholar 

  • Koirala P, Tamrakar AS, Bhattarai BP, Yadav BK, Humagain S, Yubak Dhoj GC (2010) Use and handling practice of pesticides in vegetables: a case study on some selected districts of Nepal. J Food Sci Technol Nepal 2010(6):105–109

    Google Scholar 

  • Kosamu I, Kaonga C, Utembe W (2020) A critical review of the status of pesticide exposure management in Malawi. Int J Environ Res Public Health 17(18):6727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchheuser P, Birringer M (2022) Pesticide residues in food in the European Union: analysis of notifications in the European Rapid Alert System for Food and Feed from 2002 to 2020. Food Control 133:108575. https://doi.org/10.1016/j.foodcont.2021.108575

    Article  Google Scholar 

  • Lalah JO, Otieno PO, Odira Z, Ogunah JA (2022) Pesticides: chemistry, manufacturing, regulation, usage and impacts on populationin Kenya. Intech Open J. https://doi.org/10.5772/intechopen.105826

  • Lambert O, Piroux M, Puyo S, Thorin C, L’Hostis M, Wiest L, Bulete A, Delbac F, Pouliquen H (2013) Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of Western France. PLoS One 8:e67007. https://doi.org/10.1371/journal.pone.0067007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton JH, Naeem S, Thompson LJ, Hector A, Crawley MJ (1998) Biodiversity and ecosystem function: getting the Ecotron experiment in its correct context. Funct Ecol 12(5):848–852

    Google Scholar 

  • London L, Bailie R (2001) Challenges for improving surveillance for pesticide poisoning: policy implications for developing countries. Int J Epidemiol 30(3):564–570

    CAS  PubMed  Google Scholar 

  • Long EY, Krupke CH (2016) Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat Commun 7:11629. https://doi.org/10.1038/ncomms11629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancini F, Woodcock BA, Isaac NJB (2019) Agrochemicals in the wild: identifying links between pesticide use and declines of non-target organisms. Curr Opin Environ Sci Health 11:53. https://doi.org/10.1016/j.coesh.2019.07.003

    Article  Google Scholar 

  • Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC (2020) Impact of agrochemicals on soil health. In: Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, pp 161–187

    Google Scholar 

  • Maxwell SL, Fuller RA, Brooks TM, Watson JE (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nat News 536(7615):143

    CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Mineau P, Whiteside M (2013) Pesticide acute toxicity is a better correlate of U.S. grassland bird declines than agricultural intensification. PLoS One 8:e57457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mogren CL, Lundgren JG (2016) Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Sci Rep 6:29608. https://doi.org/10.1038/srep29608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller H, MacLeod CJ, Haggerty J, Rosin C, Blackwell G, Perley C, Meadows S, Weller F, Gradwohl M (2008) Intensification of New Zealand agriculture: implications for biodiversity. N Z J Agric Res 51:253–263

    Google Scholar 

  • Mottes C, Lesueur-Jannoyer M, Le Bail M, Malézieux E (2014) Pesticide transfer models in crop and watershed systems: a review. Agron Sustain Dev 34:229–250. https://doi.org/10.1007/s13593-013-0176-3

    Article  CAS  Google Scholar 

  • Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C (2013) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 307:74–88. https://doi.org/10.1016/j.tox.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754. https://doi.org/10.1371/journal.pone.0009754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidoo S, London L, Rother HA, Burdorf A, Naidoo RN, Kromhout H (2010) Pesticide safety training and practices in women working in small-scale agriculture in South Africa. Occup Environ Med 67(12):823–828

    CAS  PubMed  Google Scholar 

  • Narenderan S, Meyyanathan S, Babu B (2020) Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res Int 133:109141

    CAS  PubMed  Google Scholar 

  • New Zealand Ministry for Environment (2015) Hazardous substances and new organisms act 1996, G.O.N.Z. Ministry for the Environment, Wellington

    Google Scholar 

  • Newton I (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600

    Google Scholar 

  • Ogwu MC (2019a) Lifelong consumption of plant-based GM foods: is it safe? In: Papadopoulou P, Misseyanni A, Marouli C (eds) Environmental exposures and human health challenges. IGI Global, Hershey, PA, pp 158–176. https://doi.org/10.4018/978-1-5225-7635-8.ch008

    Chapter  Google Scholar 

  • Ogwu MC (2019b) Towards sustainable development in Africa: the challenge of urbanization and climate change adaptation. In: Cobbinah PB, Addaney M (eds) The geography of climate change adaptation in urban Africa. Springer Nature, Cham, pp 29–55. https://doi.org/10.1007/978-3-030-04873-0_2

    Chapter  Google Scholar 

  • Ogwu MC (2019c) Understanding the composition of food waste: an “-omics” approach to food waste management. In: Gunjal AP, Waghmode MS, Patil NN, Bhatt P (eds) Global initiatives for waste reduction and cutting food loss. IGI Global, Hershey, PA, pp 212–236. https://doi.org/10.4018/978-1-5225-7706-5.ch011

    Chapter  Google Scholar 

  • Ogwu MC (2020) Value of Amaranthus [L.] species in Nigeria. In: Waisundara V (ed) Nutritional value of Amaranth. IntechOpen, London, pp 1–21. https://doi.org/10.5772/intechopen.86990

    Chapter  Google Scholar 

  • Ogwu MC, Osawaru ME, Ahana CM (2014) Challenges in conserving and utilizing plant genetic resources (PGR). Int J Genet Mol Biol 6(2):16–22. https://doi.org/10.5897/IJGMB2013.0083

    Article  Google Scholar 

  • Onwona Kwakye M, Mengistie B, Ofosu-Anim J, Nuer ATK, Van den Brink PJ (2018) Pesticide registration, distribution and use practices in Ghana. Environ Dev Sustain 21:2667. https://doi.org/10.1007/s10668-018-0154-7

    Article  Google Scholar 

  • Osawaru ME, Ogwu MC (2014) Conservation and utilization of plant genetic resources. In: Omokhafe K, Odewale J (eds) Proceedings of 38th annual conference of the Genetics Society of Nigeria. Empress Prints Nigeria Limited, pp 105–119

    Google Scholar 

  • Osawaru ME, Ogwu MC (2020) Survey of plant and plant products in local markets within Benin City and environs. In: Filho LW, Ogugu N, Ayal D, Adelake L, da Silva I (eds) African handbook of climate change adaptation. Springer Nature, Cham, pp 1–24. https://doi.org/10.1007/978-3-030-42091-8_159-1

    Chapter  Google Scholar 

  • Osawaru ME, Ogwu MC, Ahana CM (2013) Current status of plant diversity and conservation in Nigeria. Nigerian J Life Sci 3(1):168–178

    Google Scholar 

  • Oyekale AS (2022) Determinants of cocoa farmers’ compliance with agrochemical safety precautions in Ogun and Osun States, Nigeria. Toxics 10(8):454. https://doi.org/10.3390/toxics10080454

    Article  PubMed  PubMed Central  Google Scholar 

  • Özkara A, Akyıl D, Konuk M (2016) Pesticides, environmental pollution, and health. In: Larramendy ML, Soloneski S (eds) Environmental health risk—hazardous factors to living species. IntechOpen. https://doi.org/10.5772/63094

    Chapter  Google Scholar 

  • Paiola A, Assandri G, Brambilla M, Zottini M, Pedrini P, Nascimbene J (2020) Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: a global-scale systematic review. Sci Total Environ 706:135839

    CAS  PubMed  Google Scholar 

  • Parrón T, Requena M, Hernández AF, Alarcón R (2014) Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol Lett 230(2):157–165. https://doi.org/10.1016/j.toxlet.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

    Article  PubMed  Google Scholar 

  • Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182. https://doi.org/10.1371/journal.pone.0070182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piiroinen S, Goulson D (2016) Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc Biol Sci 283:20160246. https://doi.org/10.1098/rspb.2016.0246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimm SL, Raven P (2000) Extinction by numbers. Nature 403(6772):843–845

    CAS  PubMed  Google Scholar 

  • Poisot T, Canard E, Mouillot D, Mouquet N, Gravel D (2012) The dissimilarity of species interaction networks. Ecol Lett 15:1353–1361

    PubMed  Google Scholar 

  • Population Reference Bureau (2019) World population data sheet. Available from: https://interactives.prb.org/2020-wpds/. Accessed 7 Feb 2020

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114:1571–1596. https://doi.org/10.1093/aob/mcu205

    Article  PubMed  PubMed Central  Google Scholar 

  • Raven PH, Wagner DL (2021) Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc Natl Acad Sci 118(2):e2002548117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regmi R, Tiwari S, Thapa RB (2014) Ecofriendly management of spotted pod borer (Maruca vitrata) on yard-long bean in Chitwan Nepal. Int J Res 1:386–394

    Google Scholar 

  • Riedo J, Wettstein FE, Rösch A, Herzog C, Banerjee S, Büchi L, Charles R, Wächter D, Martin-Laurent F, Bucheli TD, Walder F, van der Heijden MGA (2021) Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ Sci Technol 55:2919–2928. https://doi.org/10.1021/acs.est.0c06405

    Article  CAS  PubMed  Google Scholar 

  • Riedo J, Herzog C, Banerjee S, Fenne K, Walder F, van der Heijden MGA, Bucheli TD (2022) Concerted evaluation of pesticides in soils of extensive grassland sites and organic and conventional vegetable fields facilitates the identification of major input processes. Environ Sci Technol 456(19):13686–13695. https://doi.org/10.1021/acs.est.2c02413

    Article  CAS  Google Scholar 

  • Rijal JP, Regmi R, Ghimire R, Puri KD, Gyawaly S, Poudel S (2018) Farmers’ knowledge on pesticide safety and pest management practices: a case study of vegetable growers in Chitwan, Nepal. Agriculture 8(1):16

    Google Scholar 

  • Robinson RA, Sutherland WJ (1999) The winter distribution of seed-eating birds: habitat structure, seed density and seasonal depletion. Ecography 22:447–454

    Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176

    Google Scholar 

  • Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: a hidden reality. FAO, Rome

    Google Scholar 

  • Rosas-Guerrero V, Quesada M, Armbruster WS, Pérez-Barrales R, Smith SD (2011) Influence of pollination specialization and breeding system on floral integration and phenotypic variation in Ipomoea. Evolution 65(2):350–364. https://doi.org/10.1111/evo.2011.65.issue-2;10.1111/j.1558-5646.2010.01140.x

    Article  PubMed  Google Scholar 

  • Rother HA, Hall R, London L (2008) Pesticide use among emerging farmers in South Africa: contributing factors and stakeholder perspectives. Dev S Afr 25(4):399–424

    Google Scholar 

  • Rowarth JS (2008) Agricultural intensification protects global biodiversity. N Z J Agric Res 51(4):451–455. https://doi.org/10.1080/00288230809510474

    Article  Google Scholar 

  • Rudel TK, Schneider L, Uriarte M, Turner BL II, Defries R, Lawrence D, Geogheganf J, Hechtg S, Ickowitzf A, Lambinh EF, Birkenholtzb T, Baptista S, Grau R (2009) Agricultural intensification and changes in cultivated areas, 1970–2005. PNAS 106(49):20675–20680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rundlof M, Andersson GKS, Bommarco R, Fries I, Hederstrom V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

    PubMed  Google Scholar 

  • Sabarwal A, Kumar K, Singh RP (2018) Hazardous effects of chemical pesticides on human health—cancer and other associated disorders. Environ Toxicol Pharmacol 63:103–114. https://doi.org/10.1016/j.etap.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Stuart Chapin III F, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, David M Lodge, Harold A Mooney, Martı́n Oesterheld, LeRoy Poff N, Martin T Sykes, Brian H Walker, Marilyn Walker, Diana H Wall (2000) Global Biodiversity Scenarios for the Year 2100. Science 287(5459):1770–1774. https://doi.org/10.1126/science.287.5459.1770

  • Sá Monteiro M, Sloth J, Holdt S, Hansen M (2019) Analysis and risk assessment of seaweed. EFSA J 17. https://doi.org/10.2903/j.efsa.2019.e170915

  • Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020

    Article  Google Scholar 

  • Sarkar B, Mukhopadhyay R, Mandal A, Mandal S, Vithanage M, Biswas JK (2020) Sorption and desorption of agro-pesticides in soils. In: Prasad MNV (ed) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00008-8

    Chapter  Google Scholar 

  • Sarmah AK, Müller K, Ahmad R (2004) Fate and behaviour of pesticides in the agroecosystem: a review with a New Zealand perspective. Soil Res 42:125–154. https://doi.org/10.1071/SR03100

    Article  CAS  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  • Schreinemachers P, Afari-Sefa V, Heng CH, Dung PTM, Praneetvatakul S, Srinivasan R (2015) Environmental science and policy safe and sustainable crop protection in Southeast Asia: status, challenges and policy options. Environ Sci Pol 54:357–366

    Google Scholar 

  • Sebastian A, Prasad MNV (2015) Trace element management in rice. Agronomy 5(3):374404

    Google Scholar 

  • Sebastian A, Nangia A, Prasad MNV (2020) Advances in agrochemical remediation using nanoparticles. In: Prasad MNV (ed) Agrochemicals detection, treatment and remediation. Elsevier, Chennai, pp 465–485

    Google Scholar 

  • Secor J, Cseke C (1988) Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralk-oxydim. Plant Physiol 86(1):1012

    Google Scholar 

  • Serrano-Medina A, Ugalde-Lizárraga A, Bojorquez-Cuevas MS, Garnica-Ruiz J, González-Corral MA, García-Ledezma A, Pineda-García G, Cornejo-Bravo JM (2019) Neuropsychiatric disorders in farmers associated with organophosphorus pesticide exposure in a rural village of Northwest México. Int J Environ Res Public Health 16(5):689. https://doi.org/10.3390/ijerph16050689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shingal A, Ehrich M, Foletti L (2017) Re-estimating the effects of stricter standards on trade: endogeneity matters. SSRN Electron J 44:756–787

    Google Scholar 

  • Shunthirasingham C, Gouin T, Lei YD, Ruepert C, Castillo LE, Wania F (2011) Current-use pesticide transport to Costa Rica’s high-altitude tropical cloud forest. Environ Toxicol Chem 30:2709–2717. https://doi.org/10.1002/etc.671

    Article  CAS  PubMed  Google Scholar 

  • Silva V, Mol HG, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils—a hidden reality unfolded. Sci Total Environ 653:1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441

    Article  CAS  PubMed  Google Scholar 

  • Sparks TC, Lorsbach BA (2016) Perspectives on the agrochemical industry and agrochemical discovery. Pest Manag Sci 73:672. https://doi.org/10.1002/ps.4457

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Kesavachandran C (2019) Health effects of pesticides. CRC Press/Taylor & Francis Group, London. https://doi.org/10.1201/9780429058219

    Book  Google Scholar 

  • Stark BG (2011) EU pesticide legislation—an update. Asp Appl Biol 106:259–262

    Google Scholar 

  • Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. PNAS 112:5750–5755. https://doi.org/10.1073/pnas.1500232112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storck V, Karpouzas DG, Martin-Laurent F (2017) Towards a better pesticide policy for the European Union. Sci Total Environ 575:1027–1033. https://doi.org/10.1016/j.scitotenv.2016.09.167

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Seoane S, Esborne PE, Alonso JC (2002) Large-scale habitat selection by agricultural steppe birds in Spain: identifying species–habitat responses using generalized additive models. J Appl Ecol 39(5):755–771. https://doi.org/10.1046/j.1365-2664.2002.00751.x

    Article  Google Scholar 

  • Sylvia M (2017) Pesticide safety—safety update. In: Cranberry Station extension meetings, p 249

    Google Scholar 

  • Tang FHM, Lenzen M, McBratney A, Maggi F (2021) Risk of pesticide pollution at the global scale. Nat Geosci 14:206–210. https://doi.org/10.1038/s41561-021-00712-5

    Article  CAS  Google Scholar 

  • TEEB (2009) TEEB climate issues update. The economics of ecosystem and biodiversity (TEEB), Geneva

    Google Scholar 

  • Thompson K, Hodgson JG (1998) Response to Lawton et al. Funct Ecol 12(5):852–853

    Google Scholar 

  • Thompson HM, Hunt LV (1999) Extrapolation from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology 8:147–166

    Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474. https://doi.org/10.2307/176540

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    CAS  PubMed  Google Scholar 

  • Timan D (2001) Functional diversity. Encyclopedia Biodivers 3:109–120. https://doi.org/10.1006/rwbd.1999.0154

    Article  Google Scholar 

  • Tivy J (1990) Agricultural ecology. Longman, Essex

    Google Scholar 

  • Trewavas AJ (2001) The population/biodiversity paradox: agricultural efficiency to save wilderness. Plant Physiol 125:174–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Google Scholar 

  • Tucker JC, Brown MA (1995) Comparative analysis of pesticide regulatory programs in the United States and Brazil. Loy LA Int’l & Comp LJ 18:81

    Google Scholar 

  • United Nations Environment Programme (2015) Addressing the role of natural resources in conflict and peacebuilding: a summary of progress from UNEP’s environmental cooperation for peacebuilding programme 2008–2015. UNEP, Nairobi

    Google Scholar 

  • Van der Sluijs JP, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Simon-Delso N, Stark JD, Tapparo A, van Dyck H, van Praagh J, Whitehorn PR, Wiemers M (2015) Conclusions of the worldwide integrated assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ Sci Pollut Res 22:148–154

    Google Scholar 

  • Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandin-España P (2016) Trends in analysis of pesticide residues to fulfil the European Regulation (EC) No. 1107/2009. TrAC Trends Anal Chem 80:568–580

    CAS  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499

    CAS  Google Scholar 

  • Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010) Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79:249–256

    PubMed  Google Scholar 

  • Wahab S, Muzammil K, Nasir N, Khan MS, Ahmad MF, Khalid M, Ahmad W, Dawria A, Reddy LKV, Busayli AM (2022) Advancement and new trends in analysis of pesticide residues in food: a comprehensive review. Plants 11:1106. https://doi.org/10.3390/plants11091106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weichenthal S, Moase C, Chan P (2010) A review of pesticide exposure and cancer incidence in the agricultural health study cohort. Environ Health Perspect 118(8):1117–1125. http://www.ncbi.nlm.nih.gov/pubmed/20444670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JC (2012) New EU pesticide legislation—the view of a manufacturer, in the Dundee conference, 28–29 Feb 2012. The Association for Crop Protection in Northern Britain, Dundee, pp 7–14

    Google Scholar 

  • Williams GR, Troxler A, Retschnig G, Roth K, Yanez O, Shutler D, Neuman P, Gauthier L (2015) Neonicotinoid pesticides severely affect honey been queens. Nat Sci Rep 5:14621

    CAS  Google Scholar 

  • Winrock International (2014) Knowledge-based integrated sustainable agriculture and nutrition (Kisan) project. In: Pesticide Evaluation Report and Safer Use Action Plan (PERSUAP), 2014, Version 5. Winrock International, Little Rock, AR

    Google Scholar 

  • Wolf DC, Bhuller Y, Cope R, Corvaro M, Currie RA, Doe J, Doi A, Hilton G, Mehta J, Saltmiras D, Sewell F, Trainer M, Déglin SE (2022) Transforming the evaluation of agrochemicals. Pest Manag Sci 78:5049–5056. https://doi.org/10.1002/ps.7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward G, Ebenman B, Emmerson MC, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409

    PubMed  Google Scholar 

  • Xie B, Hu Y, Liang Z, Liu B, Zheng X, Xie L (2016) Association between pesticide exposure and risk of kidney cancer: a meta-analysis. Onco Targets Ther 28(9):3893–3900. https://doi.org/10.2147/OTT.S104334

    Article  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137. https://doi.org/10.1016/j.scitotenv.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  • Zabel F, Delzeit R, Schneider JM, Seppelt R, Mauser W, Václavík T (2019) Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat Commun 10(1):1–10

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Akwasi Kosoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osumanu, I.K., Kosoe, E.A. (2023). Global Biodiversity Decline and Loss from Agricultural Intensification Through Agrochemical Application. In: Ogwu, M.C., Chibueze Izah, S. (eds) One Health Implications of Agrochemicals and their Sustainable Alternatives . Sustainable Development and Biodiversity, vol 34. Springer, Singapore. https://doi.org/10.1007/978-981-99-3439-3_3

Download citation

Publish with us

Policies and ethics