Skip to main content

Unsupervised Data Drift Detection Using Convolutional Autoencoders: A Breast Cancer Imaging Scenario

  • Conference paper
  • First Online:
Innovation in Medicine and Healthcare (KES InMed 2023)

Abstract

Imaging AI models are starting to reach real clinical settings, where model drift can happen due to diverse factors. That is why model monitoring must be set up in order to prevent model degradation over time. In this context, we test and propose a data drift detection solution based on unsupervised deep learning for a breast cancer imaging setting. A convolutional autoencoder is trained on a baseline set of expected images and controlled drifts are introduced in the data in order to test if a set of metrics extracted from the reconstructions and the latent space are able to distinguish them. We prove that this is a valid tool that manages to detect subtle differences even within these complex kind of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Leeuwen, K.G., Schalekamp, S., Rutten, M.J.C.M., van Ginneken, B., de Rooij, M.: Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur. Radiol. 31(6), 3797–3804 (2021). https://doi.org/10.1007/s00330-021-07892-z

    Article  Google Scholar 

  2. Evidently AI. https://www.evidentlyai.com/

  3. Deepchecks. https://deepchecks.com/

  4. Rabanser, S., Günnemann, S., Lipton, Z.C.: Failing loudly: an empirical study of methods for detecting dataset shift. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article 125, pp. 1396-1408 (2019). arXiv:1810.11953

  5. Lohdefink, J., et al.: Self-supervised domain mismatch estimation for autonomous perception. In: IEEE/CVF CVPRW, pp. 1359-1368 (2020). https://doi.org/10.1109/CVPRW50498.2020.00175

  6. Suprem, A., Arulraj, J., Pu, C., Ferreira, J.: ODIN: automated drift detection and recovery in video analytics. arXiv e-prints (2020). https://doi.org/10.48550/arXiv.2009.05440

  7. Yan, W., et al.: The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 623–631. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_69

    Chapter  Google Scholar 

  8. Soin, A., et al.: CheXstray: real-time multi-modal data concordance for drift detection in medical imaging AI. arXiv preprint (2022). arXiv:2202.02833

  9. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Guevara, M.A.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016). https://doi.org/10.1016/j.cmpb.2015.12.014

    Article  Google Scholar 

  10. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012). https://doi.org/10.1016/j.acra.2011.09.014

    Article  Google Scholar 

  11. Lingle, W., et al.: The cancer genome atlas breast invasive carcinoma collection (TCGA-BRCA) (Version 3) [Data set]. Cancer Imag. Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.AB2NAZRP

    Article  Google Scholar 

  12. Albertina, B., et al.: Radiology data from the cancer genome atlas lung adenocarcinoma [TCGA-LUAD] collection. Cancer Imag. Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5

    Article  Google Scholar 

  13. Kirk, S., et al.: The cancer genome atlas lung squamous cell carcinoma collection (TCGA-LUSC) (Version 4) [Data set]. Cancer Imag. Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.TYGKKFMQ

    Article  Google Scholar 

  14. García-González, M.J., et al.: CADIA: a success story in breast cancer diagnosis with digital pathology and AI image analysis. Applications of Medical Artificial Intelligence. AMAI 2022. Lecture Notes in Computer Science, vol. 13540. Springer, Cham (2022) https://doi.org/10.1007/978-3-031-17721-7_9

  15. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021). ISSN 1361–8415 (2021). https://doi.org/10.1016/j.media.2020.101952

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Bóbeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bóbeda, J., García-González, M.J., Pérez-Herrera, L.V., López-Linares, K. (2023). Unsupervised Data Drift Detection Using Convolutional Autoencoders: A Breast Cancer Imaging Scenario. In: Chen, YW., Tanaka, S., Howlett, R.J., Jain, L.C. (eds) Innovation in Medicine and Healthcare. KES InMed 2023. Smart Innovation, Systems and Technologies, vol 357. Springer, Singapore. https://doi.org/10.1007/978-981-99-3311-2_31

Download citation

Publish with us

Policies and ethics