Skip to main content

Establishing Linkages of Soil Carbon Dynamics with Microbes Mediated Ecological Restoration of Degraded Ecosystems in Indian Himalayan Region

  • Chapter
  • First Online:
Soil Carbon Dynamics in Indian Himalayan Region
  • 76 Accesses

Abstract

The Himalayan region is one of the planet’s most distinctive mountain ecosystems as a result of its geography, altitude, and biological diversity. Mountain ecosystems throughout the world are being affected by overuse of resources, widespread land conversion, and climate change. Despite their rich biodiversity and diverse ecosystems, mountains are facing an increasing pressure from land conversion, industrialization, and climate change. Between 2000 and 2025, food production in developing nations, now estimated at 1223 million metric tonnes (Mt), should increase by 778 million Mt, or 2.5% annually, to fulfill the demands of an expanding population and an anticipated change in diet. SOC is regarded as the most important indicator of soil quality and agricultural sustainability. Focusing on improving soil quality and agronomic productivity per unit area through an increase in the soil organic carbon pool provides the most additional advantages among all the others. Adopting suggested management techniques on arable lands and degraded soils would improve soil quality. Cropland deterioration is accelerated by increased agricultural activity, and restoration has been controlled by modifying the vegetation on the land. However, little is known about the crucial microbiome that fuels the degradation of organic materials linked to plants during vegetation regeneration. Ecological rehabilitation of deteriorated areas has gradually increased public awareness and sparked widespread concern around the world. Thus, this chapter will focus on the role of microbes and their functioning in enhancing SOC and in the restoration of the degraded agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahirwal J, Gogoi A, Sahoo UK (2022) Stability of soil organic carbon pools affected by land use and land cover changes in forests of eastern Himalayan region, India. Catena 215:106308

    Article  CAS  Google Scholar 

  • Azadi H, Ho P (2010) Genetically modified and organic crops in developing countries: a review of options for food security. Biotechnol Adv 28(1):160–168

    Article  PubMed  Google Scholar 

  • Balasooriya WK, Denef K, Huygens D, Boeckx P (2014) Translocation and turnover of rhizodeposit carbon within soil microbial communities of an extensive grassland ecosystem. Plant Soil 376(1):61–73

    Article  CAS  Google Scholar 

  • Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511

    Article  CAS  PubMed  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 7(2):151–163

    Article  Google Scholar 

  • Bhattacharyya T, Pal DK, Chandran P, Ray SK, Mandal C, Telpande B (2008) Soil carbon storage capacity as a tool to prioritize areas for carbon sequestration. Curr Sci 95:482–494

    CAS  Google Scholar 

  • Biological Carbon Sequestration by Climate Adaptation Science Centers (2022). https://www.usgs.gov/media/images/biological-carbon-sequestration

  • Chan KY, Bowman A, Oates A (2001) Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Sci 166(1):61–67

    Article  CAS  Google Scholar 

  • Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201(1):31–44

    Article  CAS  PubMed  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl B (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Coleman JL, Ascher JS, Bickford D, Buchori D, Cabanban A, Chisholm RA, Chong KY, Christie P, Clements GR, Dela Cruz TEE, Dressler W (2019) Top 100 research questions for biodiversity conservation in Southeast Asia. Biol Conserv 234:211–220

    Article  Google Scholar 

  • Dad JM, Khan AB (2010) Floristic composition of an alpine grassland in Bandipora, Kashmir. Grassl Sci 56(2):87–94

    Article  Google Scholar 

  • Dad JM, Reshi ZA (2015) Influence of environmental and anthropogenic factors on the species distribution in alpine rangelands of Figurez valley, Kashmir, India. Trop Ecol 56(3):335–346

    Google Scholar 

  • Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39(1):79–98

    Article  CAS  PubMed  Google Scholar 

  • De Boer W, Kowalchuk GA, Van Veen JA (2006) ‘Root-food’ and the rhizosphere microbial community composition. New Phytol 170:3–6

    Article  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  • Donhauser J, Frey B (2018) Alpine soil microbial ecology in a changing world. FEMS Microb Ecol 94(9):99

    Article  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HT, Bodelier PL, Whiteley AS, Veen JAV, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. PNAS 107(24):10938–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan PA, Price MF (2017). Mountain ecosystem services and climate change: a global overview of potential threats and strategies for adaptation

    Google Scholar 

  • FAO (2021) The impact of disasters and crises on agriculture and food security

    Google Scholar 

  • FSI (2011) Atlas Forest types of India, Forest Survey of India, Ministery of Environment Forest & Climate Change

    Google Scholar 

  • Gleixner G (2013) Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies. Ecol Res 28(5):683–695

    Article  CAS  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281(1):15–24

    Article  CAS  Google Scholar 

  • Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chemicals–a cradle-to-grave perspective. Trends Biotechnol 25(3):119–124

    Article  CAS  PubMed  Google Scholar 

  • Hoffland E, Kuyper TW, Comans RN, Creamer RE (2020) Eco-functionality of organic matter in soils. Plant Soil 455(1):1–22

    Article  CAS  Google Scholar 

  • Hoover CM, Heath LS (2015) A commentary on ‘Mineral soil carbon fluxes in forests and implications for carbon balance assessments’: a deeper look at the data. GCB Bioenergy 7(2):362–365

    Article  CAS  Google Scholar 

  • Houghton RA, House JI, Pongratz J, Van Der Werf GR, Defries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9(12):5125–5142

    Article  CAS  Google Scholar 

  • Iravani S, Varma RS (2020) Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain Chem Eng 8(14):5395–5409

    Article  CAS  Google Scholar 

  • ISRIC (2016) world soil information, https://www.isric.org/explore/wise-databases

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115(1):77–83

    Article  Google Scholar 

  • Juwarkar AA, Misra RR, Sharma JK (2014) Recent trends in bioremediation. In: Geomicrobiology and biogeochemistry. Springer, Berlin, pp 81–100

    Chapter  Google Scholar 

  • Kanwal MS, Mukherjee S, Joshi R, Rai S (2019) Impact assessment of changing environmental and socioeconomical factors on crop yields of central Himalaya with emphasis to climate change. Environ Ecol 37(1B):324–332

    Google Scholar 

  • Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, von Roepenack-Lahaye E, Wang TL, Eisenreich W (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. elife 6:e29107

    Article  PubMed  PubMed Central  Google Scholar 

  • Khaliq A, Abbasi MK (2015) Improvements in the physical and chemical characteristics of degraded soils supplemented with organic–inorganic amendments in the Himalayan region of Kashmir, Pakistan. Catena 126:209–219

    Article  CAS  Google Scholar 

  • Kumari R, Banerjee A, Kumar R, Kumar A, Saikia P, Khan ML (2019) Deforestation in India: consequences and sustainable solutions. For Degrad Around World 2019:1–18

    Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198(3):656–669

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal JB, Gulati AK, Bisht MS (1991) Satellite mapping of alpine pastures in the Himalayas. Int J Remote Sens 12(3):435–443

    Article  Google Scholar 

  • Ławniczak Ł, Woźniak-Karczewska M, Loibner AP, Heipieper HJ, Chrzanowski Ł (2020) Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules 25(4):856

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C, Balser TC (2011) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol 9(1):75–75

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Li X, Zhu R, Chen N, Ding L, Chen C (2021) Vegetation richness, species identity and soil nutrients drive the shifts in soil bacterial communities during restoration process. Environ Microbiol 13:411–424

    Google Scholar 

  • Malik AA, Chowdhury S, Schlager V, Oliver A, Puissant J, Vazquez PG, Jehmlich N, Von Bergen M, Griffiths RI, Gleixner G (2016) Soil fungal: bacterial ratios are linked to altered carbon cycling. Front Microbiol 7:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Mambelli S, Bird JA, Gleixner G, Dawson TE, Torn MS (2011) Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation. Org Geochem 42(9):1099–1108

    CAS  Google Scholar 

  • Matus F, Rumpel C, Neculman R, Panichini M, Mora ML (2014) Soil carbon storage and stabilisation in andic soils: a review. Catena 120:102–110

    Article  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111(1):41–55

    Article  CAS  Google Scholar 

  • Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, De Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8(1):1–10

    Article  Google Scholar 

  • Nath AJ, Brahma B, Sileshi GW, Das AK (2018) Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Sci Total Environ 624:908–917. https://doi.org/10.1016/j.scitotenv.2017.12.199

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Pedreño J, Almendro-Candel MB, Zorpas AA (2021) The increase of soil organic matter reduces global warming, myth or reality? Science 3(1):18

    Article  Google Scholar 

  • NRSC (2010) Wasteland Atlas of India, 2005-06. National Remote Sensing Centre, Department of Space, Government of India, 291

    Google Scholar 

  • Ojima DS, Galvin KA, Turner BL (1994) The global impact of land-use change. Bioscience 44(5):300–304

    Article  Google Scholar 

  • Pandey D, Savio N, Rai S, Pandey S (2021a) Restoration of soil microbiota for promoting climate resilient ecosystems in the Himalayan region. ENVIS Bull Himalayan Ecol 29:90

    Google Scholar 

  • Pandey S, Rai S, Pandey D (2021b) Soil microbial strategies for Himalayan ecosystem restoration. ENVIS Bull Himalayan Ecol 29:85

    Google Scholar 

  • Patil P, Kumar AK (2017) Biological carbon sequestration through fruit crops (perennial crops—natural “sponges” for absorbing carbon dioxide from atmosphere). Plant Arch 17(2):1041–1046

    Google Scholar 

  • Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Chang Biol 24(1):1–12

    Article  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI (2007) Microorganisms cycling soil nutrients and their diversity. In: Modern soil microbiology. CRC Press, New York, pp 237–261

    Google Scholar 

  • Rashid MI, de Goede RG, Nunez GAC, Brussaard L, Lantinga EA (2014) Soil pH and earthworms affect herbage nitrogen recovery from solid cattle manure in production grassland. Soil Biol Biochem 68:1–8

    Article  CAS  Google Scholar 

  • Rodríguez A, Castrejón-Godínez ML, Salazar-Bustamante E, Gama-Martínez Y, Sánchez-Salinas E, Mussali-Galante P, Tovar-Sánchez E, Ortiz-Hernández M (2020) Omics approaches to pesticide biodegradation. Curr Microbiol 77(4):545–563

    Article  PubMed  Google Scholar 

  • Rovira P, Jorba M, Romanyà J (2010) Active and passive organic matter fractions in Mediterranean forest soils. Biol Fertil Soils 46(4):355–369

    Article  Google Scholar 

  • Rukshana F, Butterly CR, Xu JM, Baldock JA, Tang C (2013) Soil organic carbon contributes to alkalinity priming induced by added organic substrates. Soil Biol Biochem 65:217–226

    Article  CAS  Google Scholar 

  • Samal PK, Palni LMS, Agrawal DK (2003) Ecology, ecological poverty and sustainable development in Central Himalayan region of India. Int J Sustain Dev World Ecol 10(2):157–168

    Article  Google Scholar 

  • Scharlemann JP, Tanner EV, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5(1):81–91

    Article  CAS  Google Scholar 

  • Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD (2018) Microbial indicators for soil quality. Biol Fertil Soils 54(1):1–10

    Article  CAS  Google Scholar 

  • Schroeder RF (1985) Himalayan subsistence systems: indigenous agriculture in rural Nepal. Mt Res Dev 5:31–44

    Article  Google Scholar 

  • Sharma A, Singh V, Sharma A, Negi N (2019) Seabuckthorn a new approach in ecological restoration of Himalayan ecosystem: a review. Int J Che Stud 7:1219–1226

    CAS  Google Scholar 

  • Singh AP, Singh SK, Rai S, Kumar M (2020) Soil carbon dynamics in relation to soil surface management and cropping system. In: Carbon management in tropical and sub-tropical terrestrial systems. Springer, Singapore, pp 159–172

    Chapter  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    Article  CAS  Google Scholar 

  • Solaiman ZM (2014) Contribution of arbuscular mycorrhizal fungi to soil carbon sequestration. In: Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin, pp 287–296

    Chapter  Google Scholar 

  • Song W, Tong X, Zhang J, Meng P, Li J (2018) How a root-microbial system regulates the response of soil respiration to temperature and moisture in a plantation. Pol J Environ Stud 27(6):2749–2756

    Article  CAS  Google Scholar 

  • Stuart Chapin F, McFarland J, David McGuire A, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J Ecol 97(5):840–850

    Article  Google Scholar 

  • Sundar B (2017) Joint forest management in India–an assessment. Int For Rev 19(4):495–511

    Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). Biotech 5(4):433–441

    Google Scholar 

  • Tefs C, Gleixner G (2012) Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest–evidence from C, N and 14C content. For Ecol Manag 263:131–137

    Article  Google Scholar 

  • Throckmorton HM, Bird JA, Dane L, Firestone MK, Horwath WR (2012) The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol Lett 15:1257–1265

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147(1):189–200

    Article  CAS  Google Scholar 

  • Treseder KK, Holden SR (2013) Fungal carbon sequestration. Science 339(6127):1528–1529

    Article  CAS  PubMed  Google Scholar 

  • Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. PNAS 94(16):8284–8291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenkoornhuyse P, Mahé S, Ineson P, Staddon P, Ostle N, Cliquet JB, Francez AJ, Fitter AH, Young JPW (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. PNAS 104(43):16970–16975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang S, Wu B, Wei M, Rong X, Li Y, Du D (2021) Ecological restoration treatments enhanced plant and soil microbial diversity in the degraded alpine steppe in Northern Tibet. Land Degrad Dev 32(2):723–737

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Mohammat A, Feng J, Zhou R, Fang J (2007) Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 84(2):131–141

    Article  Google Scholar 

  • Yellajosula G, Cihacek L, Faller T, Schauer C (2020) Soil carbon change due to land conversion to grassland in a semi-arid environment. Soil Syst 4(3):43

    Article  CAS  Google Scholar 

  • Zhao R, He M, Yue P, Huang L, Liu F (2022) Linking soil organic carbon stock to microbial stoichiometry, carbon sequestration and microenvironment under long-term forest conversion. J Environ Manag 301:113940

    Article  CAS  Google Scholar 

  • Zomer RJ, Bossio DA, Sommer R, Verchot LV (2017) Global sequestration potential of increased organic carbon in cropland soils. Sci Rep 7(1):1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, S., Rai, S., Bisht, A.S., Rai, A. (2023). Establishing Linkages of Soil Carbon Dynamics with Microbes Mediated Ecological Restoration of Degraded Ecosystems in Indian Himalayan Region. In: Mishra, G., Giri, K., Nath, A.J., Francaviglia, R. (eds) Soil Carbon Dynamics in Indian Himalayan Region. Springer, Singapore. https://doi.org/10.1007/978-981-99-3303-7_7

Download citation

Publish with us

Policies and ethics