Skip to main content

Application of Metallic Nanoparticles for Industrial Wastewater Treatment

  • Chapter
  • First Online:
Advanced Application of Nanotechnology to Industrial Wastewater

Abstract

Most of the time, the water discharged from several chemical and process industries is contaminated by varieties of organic pollutants like dyes, pharmaceutically active compounds, pesticides, etc. The toxic heavy metals and other impurities present in wastewater cause multiple issues in the aquatic environment. A huge amount of contaminated wastewater has been discharged from several manufacturing processes without proper supervision. Depending upon the different manufacturing processes, the typical contaminants are originated and mixed in industrial wastewater. Organic pollutants having severe pH, high salinity, toxic heavy metals, and high turbidity in the presence of inorganic impurities are found in industrial wastewater. In the field of environmental science and engineering, metallic nanoparticles (NPs) are considered as new functional materials with the ability to enhance wastewater treatment. Water purification is recognized as a significant area in terms of the applications of nanotechnology. The synthesis of nanomaterials with different characteristics is one of the important attributes of such an application. The development of nanomaterials based on different processes for the remediation of environmental pollutants is a challenging area due to the toxic nature of these contaminants. Many technology inventors suggested that several cost-effective methods for the removal of harmful contaminants present in water can be improved by nanotechnologies. The excellent characteristics of nanomaterials resulting from superior catalytic activities, nanoscale size, and adsorption properties as well as high reactivity have been the subject of active research and development globally in recent years. In this chapter, the different types of nanocatalysts and their engineering applications for developing a sustainable environment have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajith MP, Aswathi M, Priyadarshini E, Rajamani P (2021) Recent innovations of nanotechnology in water treatment: a comprehensive review. Biores Technol 342:126000

    Article  CAS  Google Scholar 

  • Atieh M (2011) Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon. Procedia Environ Sci 4:281–293

    Article  CAS  Google Scholar 

  • Attri P, Garg S, Ratan JK, Giri AS (2021) Silver nanoparticles from tabernaemontana divaricate leaf extract: mechanism of action and bio-application for photo degradation of 4- Aminopyridine. Environ Sci Pollut Res. https://doi.org/10.21203/rs.3.rs708984/v1

    Article  Google Scholar 

  • Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller J, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 24:3018–3019

    Article  Google Scholar 

  • Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today 124(3–4):133–148

    Article  CAS  Google Scholar 

  • Bai L, Wei M, Hong E, Shan D, Liu L, Yang W, Tang X, Wang B (2020) Study on the controlled synthesis of Zr/TiO2/SBA-15 nanophotocatalyst and its photocatalytic performance for industrial dye reactive red X–3B. Mater Chem Phys 246:122825

    Article  CAS  Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan D, Shah S (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249

    Article  CAS  Google Scholar 

  • Barnes K, Liang J, Wu R, Worley S, Lee J, Broughton R, Huang T (2006) Synthesis and antimicrobial applications of 5, 5 -ethylenebis [5-methyl-3-(3-triethoxysilylpropyl) hydantoin]. Biomaterials 27(27):4825–4830

    Article  CAS  Google Scholar 

  • Beltran J, Rivas J, Alvarez PM, Alonso MA, Acedo BA (1999) Kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: Application to phenanthrene and nitrobenzene. Ind Eng Chem Res 38:41–49

    Article  Google Scholar 

  • Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  CAS  Google Scholar 

  • Bhatkhande D, Pangarkar V, Beenackers A (2002) Photocatalytic degradation for environmental applications-a review. J Chem Technol Biotechnol 77(1):102–116

    Article  CAS  Google Scholar 

  • Biesaga M, Pyrzynska K (2006) The evaluation of carbon nanotubes as a sorbent for dicamba herbicide. J Sep Sci 29(14):2241–2244

    Article  CAS  Google Scholar 

  • Cai Y, Cai Y, Mou S, Lu Y (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081(2):245–247

    Article  CAS  Google Scholar 

  • Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2005) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal b Environ 67:197–205

    Article  Google Scholar 

  • Cao C, Cui Z, Chen C, Song W, Cai W (2010) Ceria hollow nanospheres produced by a template free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C 114(21):9865–9870

    Article  CAS  Google Scholar 

  • Chakma S, Moholkar VS (2014) Investigations in synergism of hybrid advanced oxidation processes with combinations of sonolysis + Fenton Process + UV for degradation of Bisphenol–A. Ind Eng Chem Res 53:6855–6865

    Article  CAS  Google Scholar 

  • Chen C, Wang X (2006) Adsorption of ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45(26):9144–9149

    Article  CAS  Google Scholar 

  • Chen M, Cai Y, Yan Z, Goodman D (2006) On the origin of the unique properties of supported Au nanoparticles. J Am Chem Soc 128(19):6341–6346

    Article  CAS  Google Scholar 

  • Cheng X, Yu X, Xing Z, Wan J (2012) Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particle under simulated sunlight irradiation. Energy Procedia 16:598–605

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin P, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Connor E, Mwamuka J, Gole A, Murphy C, Wyatt M (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  CAS  Google Scholar 

  • Crane R, Scott T (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  Google Scholar 

  • Fabrega J, Luoma S, Tyler C, Galloway T, Lead J (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531

    Article  CAS  Google Scholar 

  • Feldmann DF, Zuehlke S, Heberer T (2008) Occurrence, fate and assessment of polar metamizole (dipyrone) residues in hospital and municipal wastewater. Chemosphere 71:1754–1764

    Article  CAS  Google Scholar 

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Article  Google Scholar 

  • Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin Y, Terui N, Nodasaka Y, Sasa K, Shimizu K, Akasaka T, Shindoh M, Shibata K, Yokoyama A, Mori M, Tanaka K, Sato Y, Tohji K, Tanaka S, Nishi N, Watari F (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environ Sci Technol 38(24):6890–6896

    Article  CAS  Google Scholar 

  • Gao C, Zhang W, Li H, Lang L, Xu Z (2008) Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst Growth Des 8(10):3785–3790

    Article  CAS  Google Scholar 

  • Giri AS, Golder AK (2014) Fenton, photo-fenton, H2O2-photolysis and TiO2 photo-catalysis for Dipyrone oxidation: drug removal, mineralization, biodegradability and degradation mechanism. Ind Eng Chem Res 53(4):1351–1358

    Article  CAS  Google Scholar 

  • Goswami A, Raul P, Purkait M (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Des 90(9):1387–1396

    Article  CAS  Google Scholar 

  • Gotovac S, Hattori Y, Noguchi D, Miyamoto J, Kanamaru M, Utsumi S, Kanoh H, Kaneko K (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110(33):16219–16224

    Article  CAS  Google Scholar 

  • Gupta R, Kulkarni GU (2011) Removal of organic compounds from water by using a gold nanoparticle-poly(dimethylsiloxane) nanocomposite foam. Chemsuschem 4:737–743

    Article  CAS  Google Scholar 

  • Hakami O, Zhang Y, Banks C (2012) Thiol-functionalised mesoporous silica–coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res 46(12):3913–3922

    Article  CAS  Google Scholar 

  • Hot J, Topalov J, Ringot E, Bertron A (2017) Investigation on parameters affecting the effectiveness of photocatalytic functional coatings to degrade NO: TiO2 amount on surface, illumination, and substrate roughness. Int J Photoenergy 1–14

    Google Scholar 

  • Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147(1):265–274

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Khan MJ, Singh R, Joshi KB, Vinayak V (2019) TiO2 doped polydimethylsiloxane (PDMS) and Luffa cylindrica based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels. RSC Adv 9:22410–22416

    Article  CAS  Google Scholar 

  • Kim S, Kwak S, Sohn B, Park T (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211(1):157–165

    Article  CAS  Google Scholar 

  • Kim J, Kuk E, Yu KN, Kim J, Park S, Lee HJ, Kim S, Park Y, Park Y, Hwang C et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101

    Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  • Kummerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710

    Google Scholar 

  • Lara H, Ayala-Nuñez N, Turrent L, Padilla C (2010) Bactericidal effect of silver nanoparticles against ´ multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621

    Google Scholar 

  • Leonidas A, Perez-Estrada SM, Ana AR (2007) Degradation of dipyrone and its main intermediates by solar AOPs Identification of intermediate products and toxicity assessment. Catal Today 129:207–214

    Article  Google Scholar 

  • Li Y, Zhu Y, Zhao Y, Wu D, Luan Z (2006) Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam Relat Mater 15(1):90–94

    Article  Google Scholar 

  • Li X, Wang L, Lu X (2010) Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J Hazard Mater 177(1):639–647

    Article  CAS  Google Scholar 

  • Li L, Lu J, Wang Z, Yang L, Zhou X, Han L (2012) Fabrication of the CN co-doped rod-like TiO2 photocatalyst with visible-light responsive photocatalytic activity. Mater Res Bull 47(6):1508–1512

    Article  CAS  Google Scholar 

  • Liang P, Liu Y, Guo L, Zeng J, Lu H (2004) Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J Anal at Spectrom 19(11):1489–1492

    Article  CAS  Google Scholar 

  • Liang P, Ding Q, Song F (2005) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28(17):2339–2343

    Article  CAS  Google Scholar 

  • Liu J, Zhao Z, Jiang G (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954

    Article  CAS  Google Scholar 

  • Liu G, Han C, Pelaez M, Zhu D, Liao S, Likodimos V, Ioannidis N, Kontos A, Falaras P, Dunlop P, Byrne J, Dionysiou D (2012) Synthesis, characterization and photocatalytic evaluation of visible light activated C–doped TiO2 nanoparticles. Nanotechnology 23(29):294003

    Article  Google Scholar 

  • Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123(9):2058–2059

    Article  CAS  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81(12):1932–1940

    Article  CAS  Google Scholar 

  • Luo T, Cui J, Hu S, Huang Y, Jing C (2010) Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44(23):9094–9098

    Article  CAS  Google Scholar 

  • Martinez-Gutierrez F, Olive P, Banuelos A, Orrantia E, Nino N, Sanchez E, Ruiz F, Bach H, AvGay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed Nanotechnol Biol Med 6(5):681–688

    Google Scholar 

  • Mishra V, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 4:587–592

    Google Scholar 

  • Molinari R, Pirillo F, Falco M, Loddo V, Palmisano L (2004) Photocatalytic degradation of dyes by using a membrane reactor. Chem Eng Process 43(9):1103–1114

    Article  CAS  Google Scholar 

  • Munoz J, Gallego M, Valcarcel M (2005) Speciation of organometallic compounds in environmetal ´ samples by gas chromatography after flow preconcentration on fullerenes and nanotubes. Anal Chem 77(16):5389–5395

    Article  CAS  Google Scholar 

  • Ojha A, Rathod R (2009) Quantification of 4-methylaminoantipyrine, the active metabolite of dipyrone, in human plasma. Bioanalysis 1:293–298

    Article  CAS  Google Scholar 

  • Pacheco S, Tapia J, Medina M, Rodriguez R (2006) Cadmium ions adsorption in simulated wastewater using structured alumina-silica nanoparticles. J Non-Cryst Solids 352(52):5475–5481

    Article  CAS  Google Scholar 

  • Pang YL, Abdullah A (2013) Fe3+ doped TiO2 nanotubes for combined adsorption-sonocatalytic degradation of real textile wastewater. Appl Catal B 129:473–481

    Article  CAS  Google Scholar 

  • Panyala N, Peña-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to ´ the environment and human health. J Appl Biomed 6(3):117–129

    Article  CAS  Google Scholar 

  • Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376(1):154–158

    Article  CAS  Google Scholar 

  • Peracchia M, Desmaële D, Couvreur P, d’Angelo J (1997) Synthesis of a novel poly (MePEG cyanoacrylate-co-alkyl cyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules 30(4):846–851

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  • Rai A, Prabhune A, Perry C (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789–6798

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng E, Vargas-Reus M, Reip P, Allaker R (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  CAS  Google Scholar 

  • Salam M, Makki M, Abdelaal M (2011) Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloy Compd 509(5):2582–2587

    Article  CAS  Google Scholar 

  • Salipira K, Mamba B, Krause R, Malefetse T, Durbach S (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5(1):13–17

    Article  CAS  Google Scholar 

  • Schierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157(4):1088–1094

    Article  CAS  Google Scholar 

  • Shen Y, Tang J, Nie Z, Wang Y, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68(3):312–319

    Article  CAS  Google Scholar 

  • Sherif AY, Maitlo HA, Lee J, Kim KH (2020) Nanotechnology-based sorption and membrane technologies for the treatment of petroleum-based pollutants in natural ecosystems and wastewater streams. Adv Coll Interface Sci 275:102071

    Article  Google Scholar 

  • Singh S, Barick K, Bahadur D (2011) Novel and efficient three dimensional mesoporous ZnOnanoassemblies for envirnomental remediation. Int J Nanosci 10(04n05):1001–1005

    Google Scholar 

  • Sohrabi MR, Ghavami M (2008a) Taguchi experimental design used for Nano photo catalytic degradation of the pharmaceutical agent Aspirin. J Chem Pharm Res 153(3):1235–1239

    CAS  Google Scholar 

  • Sohrabi MR, Ghavami M (2008b) Taguchi experimental design used for Nano photo catalytic degradation of the pharmaceutical agent Aspirin. J Chem Pharm Res 153(3):1235–1239

    CAS  Google Scholar 

  • Tang WZ, Tassos S (1997) Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent. Water Res 31:1117–1125

    Article  CAS  Google Scholar 

  • Tekin H, Bilkay O, Selale S, Tolga H (2008) Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J Hazard Mater 136:258–265

    Article  Google Scholar 

  • Trovo AG, Raquel FP, Nogueira AA, Carla SA (2009) Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment. Chemosphere 77:1292–1298

    Article  CAS  Google Scholar 

  • Vukovic G, Marinkovi AC, Olic M, Risti (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multiwalled carbon nanotubes. Chem Eng J 157(1):238–248

    Google Scholar 

  • Vukovic G, Marinkovi CA (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173(3):855–865

    Article  CAS  Google Scholar 

  • Wang L, Li J, Jiang Q, Zhao L (2012) Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from wastewater. Dalton Trans 41(15):4544–4551

    Article  CAS  Google Scholar 

  • Wu L, Shamsuzzoha M, Ritchie S (2005) Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. J Nanopart Res 7(4–5):469–476

    Article  CAS  Google Scholar 

  • Xie M, Jing L, Zhou J, Lin J, Fu H (2010) Synthesis of nanocrystalline anatase TiO2 by one-pot twophase separated hydrolysis-solvothermal processes and its high activity for photocatalytic degradation of rhodamine B. J Hazard Mater 176(1):139–145

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2007) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145(2):529–537

    Article  CAS  Google Scholar 

  • Yuan G, Wu L (2007) Allophane nanoclay for the removal of phosphorus in water and wastewater. Sci Technol Adv Mater 8(1):60–62

    Article  CAS  Google Scholar 

  • Zhao Y, Shen H, Pan S, Hu M (2010) Synthesis, characterization and properties of ethylenediamine functionalized Fe3O4 magnetic polymers for removal of Cr(VI) in wastewater. J Hazard Mater 182(1):295–302

    Article  CAS  Google Scholar 

  • Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal Bioanal Chem 385(8):1520–1525

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ardhendu Sekhar Giri or Sankar Chakma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giri, A.S., Kumar, V., Chakma, S. (2023). Application of Metallic Nanoparticles for Industrial Wastewater Treatment. In: Shah, M.P. (eds) Advanced Application of Nanotechnology to Industrial Wastewater. Springer, Singapore. https://doi.org/10.1007/978-981-99-3292-4_3

Download citation

Publish with us

Policies and ethics