Skip to main content

Technological Interventions for Wastewater Treatment: Monitoring and Management

  • Chapter
  • First Online:
Advanced Application of Nanotechnology to Industrial Wastewater
  • 147 Accesses

Abstract

The continuous denouement in the water environment is grounds for the demand of new and innovative technological interventions to achieve sustainable management of urban wastewater systems. There is a continuous increase in the concentration of contaminants like organic/inorganic material, pathogens, heavy metals and other environmental toxicants in the water systems. Various new technologies like the application of nanotechnology, electrochemistry based approaches and other computational technologies are now replacing the obsolete approaches of wastewater treatment, thereby putting forth a futuristic paradigm of wastewater monitoring and management. We have attempted to highlight technologies and approaches that are better suited for efficient removal of toxicants from wastewater. There are various national and international guidelines/Specifications for the establishment, infrastructure development and proper functioning of wastewater treatment plants. In present day scenario these newer ways of wastewater treatment will not only benefit the human health but also have a good impact on the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng J 9:3077–3092

    Article  Google Scholar 

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Bai L, Wei M, Hong E, Shan D, Liu L, Yang W, Tang X, Wang B (2020) Study on the controlled synthesis of Zr/TiO2/SBA-15 nanophotocatalyst and its photocatalytic performance for industrial dye reactive red X–3B. Mater Chem Phys 246:122825

    Article  CAS  Google Scholar 

  • Bali U, Catalkaya EC, Sengul F (2003) Photochemical degradation and mineralization of phenol: a comparative study. J Environ Sci Health 38:2259–2275

    Article  Google Scholar 

  • Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process Intensif 109:178–189

    Article  CAS  Google Scholar 

  • Burkhard R, Deletic A, Craig A (2000) Techniques for water and wastewater management: a review of techniques and their integration in planning. Urban Wat 2(3):197–221

    Article  CAS  Google Scholar 

  • Crawford CB, Quinn B (2017) The interactions of microplastics and chemical pollutants. In Microplastic pollutants. Elsevier, Amsterdam, The Netherlands, pp 131–157

    Google Scholar 

  • Crini G, Badot PM (2007) Traitement et épuration des eaux industrielles pol-luées, Presses Universitaires de Franche-Comté, Besanc¸ on, France

    Google Scholar 

  • de Vidales MJM, Barba S, Sáez C, Cañizares P, Rodrigo MA (2014) Electrochim Acta 140:20

    Article  CAS  Google Scholar 

  • Derco J, Vrana B (2018) Introductory chapter: biosorption. In Biosorption; IntechOpen, London, UK

    Google Scholar 

  • Ding H, Luo X, Zhang X, Yang H (2019) Alginate-immobilized Aspergillus niger: Characterization and biosorption removal of thorium ions from radioactive wastewater. Colloids Surf A Physicochem Eng Asp 562:186–195

    Article  CAS  Google Scholar 

  • Esclapez MD, Díez- García MI, Sáez V, Tudela I, Pérez JM, González-García J, Bonete PM (2011) Electrochim Acta 56:8138

    Google Scholar 

  • Fard RF, Azimi A, Bidhendi GN (2011) Batch kinetics and isotherms for biosorption of cadmium onto biosolids. Desalin Water Treat 28:69–74

    Article  CAS  Google Scholar 

  • Feng Y, Yang L, Liu J, Logan BE (2016) Electrochemical technologies for wastewater treatment and resource reclamation. Environ Sci Water Res Technol 2:800–831

    Google Scholar 

  • Ferroudj N, Nzimoto J, Davidson A, Talbot D, Briot E, Dupuis V, Abramson S (2013) Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic fenton catalysts for the removal of water pollutants. App Catal B Environ 136:9–18

    Article  Google Scholar 

  • Fouad YO (2014) Alexandria Eng J 53:199

    Article  Google Scholar 

  • Gong CH, Zhang ZG, Li HT, Li D, Wu BC, Sun YW, Cheng YJ (2014) J Hazard Mater 274:465

    Article  CAS  Google Scholar 

  • Gusain R, Kumar N, Ray SS (2020) Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 405:213111

    Article  CAS  Google Scholar 

  • Isaa MH, Ezechi EH, Ahmed Z, Magram SF, Kutty SRM (2014) Water Res 51:113

    Article  Google Scholar 

  • Jain K, Patel AS, Pardhi VP, Flora SJS (2021) Nanotechnology in wastewater management: a new paradigm towards wastewater treatment. Molecules 26:1797. https://doi.org/10.3390/molecules26061797

    Article  CAS  Google Scholar 

  • Kalhapure RS, Sonawane SJ, Sikwal DR et al (2015) Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf B 136:651–658

    Article  CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5(8):8075–8109

    Article  CAS  Google Scholar 

  • Koyuncu I, Sengur R, Turken T, Guclu S, Pasaoglu M (2015) Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. In Advances in membrane technologies for water treatment. Oxford, UK, Woodhead Publishing, pp 83–128

    Google Scholar 

  • Li JJ, Liu HL, Cheng XW, Xin YJ, Xu WX, Ma ZP, Ma J, Ren NQ, Li Q (2012) Ind Eng Chem Res 51:15557

    Article  CAS  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:10. Article ID 4964828. https://doi.org/10.1155/2016/4964828

  • Liu F, Yang JH, Zuo J et al (2014) Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. J Environ Sci 26(8):1751–1762

    Article  CAS  Google Scholar 

  • Loghambal S, Rajendran L (2011) J Electroanal Chem 661:137

    Article  CAS  Google Scholar 

  • Mahmoudian-Boroujerd L, Karimi- Jashni A, Hosseini SN, Paryan M (2019) Optimization of rDNA degradation in recombinant Hepatitis B vaccine production plant wastewater using visible light excited Ag-doped TiO2 nanophotocatalyst. Process Saf Environ Prot 122:328–338

    Google Scholar 

  • Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219

    Article  CAS  Google Scholar 

  • Mijin DŽ, Avramov Ivic ML, Onjiac AE, Grgur BN (2012) Chem Eng J 204:151

    Google Scholar 

  • Mulyanti R, Susanto H (2018) Wastewater treatment by nanofiltration membranes. IOP Conf Ser Earth Environ Sci 142

    Google Scholar 

  • Parham H, Bates S, Xia Y, Zhu Y (2013) A highly efficient and versatile carbon nanotube/ceramic composite filter. Carbon 54:215–223

    Article  CAS  Google Scholar 

  • Parsons S, Jefferson B (2006) Introduction to potable water treatment processes. Wiley-Blackwell, Hoboken, New Jersey, United States

    Google Scholar 

  • Prachi, Gautam P, Madathil D, Nalinakumari BN (2013) Nanotechnology in waste water treatment: a review. Int J Chem Tech Res 5:2303–2308

    Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  Google Scholar 

  • Refaat Alawady A, Ali Alshahrani A, Ali Aouak T, Mohamed Alandis N (2020) Polysulfone membranes with CNTs/Chitosan biopolymer nanocomposite as selective layer for remarkable heavy metal ions rejection capacity. Chem Eng J 15:124267

    Google Scholar 

  • Rueda-Marquez JJ, Levchuk I, Fernández Ibañez P, Sillanpää M (2020) A critical review on application of photocatalysis for tox-icity reduction of real wastewaters. J Clean Prod 258:120694

    Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  • Souza FL, Aquina JM, Miwa DW, Rodrigob MA, Motheo AJ (2014) J Environ Chem Eng 2:811

    Article  CAS  Google Scholar 

  • Tavares MG, da Silva LVA, Sales Solano AM, Tonholo J, Martínez-Huitle CA, Zanta CLPS (2012) Chem Eng J 204:141

    Google Scholar 

  • Vasudevan S, Lakshmi J (2012) Environ Eng Sci 29:563

    Article  CAS  Google Scholar 

  • World Health Organization. https://www.who.int/news-room/fact-sheets/detail/drinking-water. Accessed 30 Dec 2021

  • Wu L, Wang H, Xu TW, Xu ZL (2017) Polymeric Membranes. In Membrane-based separations in metallurgy. Elsevier, Amsterdam, The Netherlands, pp 297–334.

    Google Scholar 

  • Yan J, Han L, Gao W, Xue S, Chen M (2015) Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Biores Technol 175:269–274

    Article  CAS  Google Scholar 

  • Zelmanov G, Semiat R (2008) Phenol oxidation kinetics in water solution using iron (3)-oxide-based nano-catalysts. Wat Res 42:3848–3856

    Article  CAS  Google Scholar 

  • Zhang C, Li Y, Zhang W, Wang P, Wang C (2018) Metal-free virucidal effects induced by g-C3N4 under visible light irradiation: statistical analysis and parameter optimization. Chemosphere 195:551–558

    Article  CAS  Google Scholar 

  • Zhao S, Huang GH, Cheng GH, Wang YF, Fu HY (2014) Desalination 344:454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, CSIR-IITR for infrastructural support of the prestigious institute. Moreover, the support of Department of Biochemistry, University of Lucknow and Amity University Uttar Pradesh are praiseworthy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Garg, P., Srivastava, P., Sharma, V.P. (2023). Technological Interventions for Wastewater Treatment: Monitoring and Management. In: Shah, M.P. (eds) Advanced Application of Nanotechnology to Industrial Wastewater. Springer, Singapore. https://doi.org/10.1007/978-981-99-3292-4_17

Download citation

Publish with us

Policies and ethics