Skip to main content

Anomaly Detection in Orthopedic Musculoskeletal Radiographs Using Deep Learning

  • Conference paper
  • First Online:
Proceedings of Eighth International Congress on Information and Communication Technology (ICICT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 693))

Included in the following conference series:

Abstract

In this paper, we investigate anomaly detection in orthopedics musculoskeletal radiographs using deep learning. We examine thirteen models from the most powerful neural network families: generative adversarial networks (GANs), autoencoders (AEs) and convolutional neural network (CNN). The main goal is to detect anomalies in musculoskeletal radiographs using the Stanford Musculoskeletal Radiographs (MURA) dataset. The results of the examined models were compared to several recent studies. Generally, CNN models achieve the best score of 0.822 which is a very promising result, competitive for expert radiologists performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abreu Dias Dd (2019) Musculoskeletal abnormality detection on X-ray using transfer learning

    Google Scholar 

  2. Akcay S, Atapour-Abarghouei A, Breckon TP (2018) GANomaly: Semi-supervised anomaly detection via adversarial training. In: Asian conference on computer vision. Springer, pp 622–637

    Google Scholar 

  3. Akçay S, Atapour-Abarghouei A, Breckon TP (2019) Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: 2019 International joint conference on neural networks (IJCNN). IEEE, pp 1–8

    Google Scholar 

  4. Alaoui Belghiti K, Mikram M, Rhanoui M, Yousfi S (2023) Deep learning based multi-task approach for neuronal cells classification and segmentation. In: Proceedings of eighth international congress on information and communication technology. Springer

    Google Scholar 

  5. Ananda A, Ngan KH, KarabaÄź C, Ter-Sarkisov A, Alonso E, Reyes-Aldasoro CC (2021) Classification and visualisation of normal and abnormal radiographs; a comparison between eleven convolutional neural network architectures. Sensors 21(16):5381

    Article  Google Scholar 

  6. Chalapathy R, Chawla S (2019) Deep learning for anomaly detection: a survey. arXiv:1901.03407

  7. Chen Y, Zhang J, Yeo CK (2019) Network anomaly detection using federated deep autoencoding gaussian mixture model. In: International conference on machine learning for networking. Springer, pp 1–14

    Google Scholar 

  8. Davletshina D, Melnychuk V, Tran V, Singla H, Berrendorf M, Faerman E, Fromm M, Schubert M (2020) Unsupervised anomaly detection for X-ray images. arXiv:2001.10883 (2020)

  9. Donahue J, Krähenbühl P, Darrell T (2016) Adversarial feature learning. arXiv:1605.09782

  10. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144

    Article  MathSciNet  Google Scholar 

  11. Goyal M, Malik R, Kumar D, Rathore S, Arora R (2020) Musculoskeletal abnormality detection in medical imaging using GnCNNr (group normalized convolutional neural networks with regularization). SN Comput Sci 1(6):1–12

    Article  Google Scholar 

  12. Harnoune A, Rhanoui M, Mikram M, Yousfi S, Elkaimbillah Z, El Asri B (2021) Bert based clinical knowledge extraction for biomedical knowledge graph construction and analysis. Comput Methods Programs Biomed Update 1:100042

    Article  Google Scholar 

  13. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

    Google Scholar 

  14. Hidaka A, Kurita T (2017) Consecutive dimensionality reduction by canonical correlation analysis for visualization of convolutional neural networks. In: Proceedings of the ISCIE international symposium on stochastic systems theory and its applications, vol. 2017. The ISCIE symposium on stochastic systems theory and its applications, pp 160–167

    Google Scholar 

  15. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

    Google Scholar 

  16. Liu Y, Li Z, Zhou C, Jiang Y, Sun J, Wang M, He X (2019) Generative adversarial active learning for unsupervised outlier detection. IEEE Trans Knowl Data Eng 32(8):1517–1528

    Google Scholar 

  17. Matsumoto M, Saito N, Ogawa T, Haseyama M (2019) Chronic gastritis detection from gastric X-ray images via deep autoencoding Gaussian mixture models. In: 2019 IEEE 1st global conference on life sciences and technologies (LifeTech). IEEE, pp 231–232

    Google Scholar 

  18. Mehr G (2020) Automating abnormality detection in musculoskeletal radiographs through deep learning. arXiv:2010.12030

  19. Namit Chawla NK. Musculoskeletal abnormality detection in humerus radiographs using deep learning

    Google Scholar 

  20. Ounasser N, Rhanoui M, Mikram M, Asri BE (2022) Generative and autoencoder models for large-scale mutivariate unsupervised anomaly detection. In: Networking, intelligent systems and security. Springer, pp 45–58

    Google Scholar 

  21. Rajpurkar P, Irvin J, Bagul A, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball RL, et al (2017) MURA: large dataset for abnormality detection in musculoskeletal radiographs. arXiv:1712.06957

  22. Raza K, Singh NK (2021) A tour of unsupervised deep learning for medical image analysis. Curr Med Imaging 17(9):1059–1077

    Google Scholar 

  23. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) MobileNetV2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520

    Google Scholar 

  24. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  25. Song S, Yang K, Wang A, Zhang S, Xia M (2021) A MURA detection model based on unsupervised adversarial learning. IEEE Access 9:49920–49928

    Article  Google Scholar 

  26. Spahr A, Bozorgtabar B, Thiran JP (2021) Self-taught semi-supervised anomaly detection on upper limb X-rays. In: 2021 IEEE 18th international symposium on biomedical imaging (ISBI). IEEE, pp 1632–1636

    Google Scholar 

  27. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

    Google Scholar 

  28. Uzunova H, Schultz S, Handels H, Ehrhardt J (2019) Unsupervised pathology detection in medical images using conditional variational autoencoders. Int j Comput Assisted Radiol Surgery 14(3):451–461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabila Ounasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ounasser, N., Rhanoui, M., Mikram, M., El Asri, B. (2023). Anomaly Detection in Orthopedic Musculoskeletal Radiographs Using Deep Learning. In: Yang, XS., Sherratt, R.S., Dey, N., Joshi, A. (eds) Proceedings of Eighth International Congress on Information and Communication Technology. ICICT 2023. Lecture Notes in Networks and Systems, vol 693. Springer, Singapore. https://doi.org/10.1007/978-981-99-3243-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3243-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3242-9

  • Online ISBN: 978-981-99-3243-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics