Skip to main content

Challenges and Prospects

  • Chapter
  • First Online:
Surface Plasmon Resonance Imaging

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 95))

  • 140 Accesses

Abstract

SPRi has been demonstrated to have many advantages over other analytical tools as exemplified in Chaps. 58 that have made SPRi unreplaceable in many fields, especially in molecular recognition-based analysis like selective screening, affinity studies, immune reactions, single or discrete particle imaging, and so forth. Keeping these in mind, SPRi is also facing some critical issues and challenges after a fairly long term of exploration and development. It remains quite vague about the future of SPRi and its frontiers of researches and applications. We are trying to figure out possible routes and chance in future SPRi developments, basically through the analysis of several essential challenges in combination with prospection based on our limited and superficial judgment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W (2017) Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron 87:433–438

    Google Scholar 

  2. Xu J, Chen Y (2018) Surface plasmon resonance sensing with adjustable sensitivity based on a flexible liquid core coupling unit. Talanta 184:468–474

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Q, Huang H, Zhang L, Wang L, Zeng Y, Xia X, Liu F, Chen Y (2016) Strategy to fabricate naked-eye readout ultrasensitive plasmonic nanosensor based on enzyme mimetic gold nanoclusters. Anal Chem 88:1412–1418

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Xu J, Wang Y, Wang F, Chen Y (2016) A universal strategy for direct immobilization of intact bioactivity-conserved carbohydrates on gold nanoparticles. RSC Adv 6:85333–85339

    Article  CAS  Google Scholar 

  5. Homola J (2006) Surface plasmon resonance based sensors. In: Wolfbeis OS (ed) Springer series on chemical sensors and biosensors. Springer, Berlin, p 251

    Google Scholar 

  6. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1(3):484–588

    Article  CAS  Google Scholar 

  7. Chabot V, Cuerrier CM, Escher E, Aimez V, Grandbois M, Charette PG (2009) Biosensing based on surface plasmon resonance and living cells. Biosens Bioelectron 24:1667–1673

    Article  CAS  PubMed  Google Scholar 

  8. Berini P (2008) Bulk and surface sensitivities of surface plasmon waveguides. New J Phys 10:105010

    Article  Google Scholar 

  9. Vala M, Etheridge S, Roach JA, Homola J (2009) Long-range surface plasmons for sensitive detection of bacterial analytes. Sens Actuators B Chem 139:59–63

    Article  CAS  Google Scholar 

  10. Huang C-J, Dostalek J, Sessitsch A, Knoll W (2011) Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7. Anal Chem 83:674–677

    Google Scholar 

  11. Pal N, Maurya JB, Prajapati YK (2022) Long-range SPR imaging sensor mediated by antimonene for biomolecule sensing with ultrahigh imaging sensitivity and figure of merit. Plasmonics 17:1571–1580. https://doi.org/10.1007/s11468-022-01644-5

    Article  CAS  Google Scholar 

  12. Hu F, Xu J, Chen Y (2017) Surface plasmon resonance imaging detection of sub-femtomolar microRNA. Anal Chem 89:10071–10077

    Article  CAS  PubMed  Google Scholar 

  13. Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F (2012) Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens Actuators B 174:292–298

    Article  CAS  Google Scholar 

  14. Balevicius Z, Baskys A (2019) Optical dispersions of Bloch surface waves and surface plasmon polaritons: towards advanced biosensors. Materials 12:3147. https://doi.org/10.3390/ma12193147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gryga M, Ciprian D, Hlubina P (2020) Bloch surface wave resonance based sensors as an alternative to surface plasmon resonance sensors. Sensors 20:5119. https://doi.org/10.3390/s20185119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hlubina P, Gryga M, Ciprian D, Pokorny P, Gembalova L, Sobota J (2022) High performance liquid analyte sensing based on Bloch surface wave resonances in the spectral domain. Opt Laser Technol 145:107492. https://doi.org/10.1016/j.optlastec.2021.107492

    Article  CAS  Google Scholar 

  17. Toma K, Kano H, Offenhäusser A (2014) Label-free measurement of cell–electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8:12612–12619

    Article  CAS  PubMed  Google Scholar 

  18. Zhang LL, Chen X, Wei HT, Li H, Sun JH, Cai HY, Chen JL, Cui DF (2013) An electrochemical surface plasmon resonance imaging system targeting cell analysis. Rev Sci Instrum 84:085005. https://doi.org/10.1063/1.4819027

    Article  CAS  PubMed  Google Scholar 

  19. Guedon P, Livache T, Martin F, Lesbre F, Roget A, Bidan G, Levy Y (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem 72:6003–6009

    Article  CAS  PubMed  Google Scholar 

  20. Flätgen G, Krischer K, Pettinger B, Doblhofer K, Junkes H, Ertl G (1995) Two-dimensional imaging of potential waves in electrochemical systems by surface plasmon microscopy. Science 269:668–671

    Google Scholar 

  21. Iwasaki Y, Tobita T, Kurihara K, Horiuchi T, Suzuki K, Niwa O (2002) Imaging of electrochemical enzyme sensor on gold electrode using surface plasmon resonance. 17:782–788

    Google Scholar 

  22. Andersson O, Ulrich C, Bjorefors F, Liedberg B (2008) Imaging SPR for detection of local electrochemical processes on patterned surfaces. Sens Actuators B 134:545–550

    Google Scholar 

  23. Jory MJ, Bradberry GW, Cann PS, Sambles JR (1996) Surfaceplasmon opto-electrochemistry. Sens Actuat B 35:197–201

    Google Scholar 

  24. Iwasaki Y, Horiuchi T, Morita M, Niwa O (1999) Time differential surface plasmon resonance measurements applied for electrochemical analysis. Electroanalysis 9:1239–1241.

    Google Scholar 

  25. Schlereth DD (1999) Characterization of protein monolayers by surface plasmon resonance combined with cyclic voltammetry ‘in situ’. J. Electroanal Chem 464:198–207

    Google Scholar 

  26. Avenas Q, Moreau J, Costella M, Maalaoui A, Souifi A, Charette P, Marchalot J, Frénéa-Robin M, Canva M (2019) Performance improvement of plasmonic sensors using a combination of AC electrokinetic effects for (bio)target capture. Electrophoresis 40:1426–1435

    Article  CAS  PubMed  Google Scholar 

  27. Krone JR, Nelson RW, Dogruel D, Williams P, Granzow R (1997) BIA/MS: interfacing biomolecular interaction analysis with mass spectrometry. Anal Biochem 244:124–132

    Google Scholar 

  28. Nelson RW, Krone JR, Jansson O (1997) Surface plasmon resonance biomolecular interaction analysis mass spectrometry. 1. Chip-based analysis. Anal Chem 69:4363–4368

    Google Scholar 

  29. Nelson RW, Krone JR (1999) Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS). J Mol Recogn 12:77–93

    Article  CAS  Google Scholar 

  30. Nedelkov D, Nelson RW (2003) Surface plasmon resonance mass spectrometry: recent progress and outlooks. Trends Biotechnol 21:301–305

    Article  CAS  PubMed  Google Scholar 

  31. Bellon S, Buchmann W, Gonnet F, Jarroux N, Anger-Leroy M, Guillonneau F, Daniel R (2009) Anal Chem 81:7695–7702

    Article  CAS  PubMed  Google Scholar 

  32. Remy-Martin F, El Osta M, Lucchi G, Zeggari R, Leblois T, Bellon S, Ducoroy P, Boireau W (2012) Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA–MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem 404:423–432

    Article  CAS  PubMed  Google Scholar 

  33. Mattei B, Cervone F, Roepstorff P (2001) The interaction between endopolygalacturonase from Fusarium moniliforme and PGIP from Phaseolus vulgaris studied by surface plasmon resonance and mass spectrometry. Comp Funct Genomics 2:359–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sonksen CP, Roepstorff P, Markgren PO, Danielson UH, Hamalainen MD, Jansson O (2001) Capture and analysis of low molecular weight ligands by surface plasmon resonance combined with mass spectrometry. Eur J Mass Spectrom 7:385–391

    Article  CAS  Google Scholar 

  35. Bouffartigues E, Leh H, Anger-Leroy M, Rimsky S, Buckle M (2007) Rapid coupling of surface plasmon resonance (SPR and SPRi) and ProteinChip™ based mass spectrometry for the identification of proteins in nucleoprotein interactions. Nucleic Acids Res 35:e39

    Article  PubMed  PubMed Central  Google Scholar 

  36. Natsume T, Nakayama H, Jansson O, Isobe T, Takio K, Mikoshiba K (2000) Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing. Anal Chem 72:4193–4198

    Article  CAS  PubMed  Google Scholar 

  37. Nedelkov D, Nelson RW (2000) Exploring the limit of detection in biomolecular interaction analysis mass spectrometry (BIA/MS): detection of attomole amounts of native proteins present in complex biological mixtures. Anal Chim Acta 423:1–7

    Article  CAS  Google Scholar 

  38. Nedelkov D, Rasooly A, Nelson RW (2000) Multitoxin biosensor–mass spectrometry analysis: a new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food. Int J Food Microbiol 60:1–13

    Article  CAS  PubMed  Google Scholar 

  39. Grote J, Dankbar N, Gedig E, Koenig S (2005) Surface plasmon resonance/mass spectrometry interface. Anal Chem 77:1157–1162

    Article  CAS  PubMed  Google Scholar 

  40. Boireau W, Rouleau A, Lucchi G, Ducoroy P (2009) Revisited BIA-MS combination: entire “on-a-chip” processing leading to the proteins identification at low femtomole to sub-femtomole levels. Biosens Bioelectron 24:1121–1127

    Article  CAS  PubMed  Google Scholar 

  41. Forest S, Breault-Turcot J, Chaurand P, Masson J-F (2016) Surface plasmon resonance imaging-MALDI-TOF imaging mass spectrometry of thin tissue sections. Anal Chem 88:2072–2079

    Article  CAS  PubMed  Google Scholar 

  42. Kim YE, Yi SY, Lee CS, Jung Y, Chung BH (2012) Gold patterned biochips for on-chip immuno-MALDI-TOF MS: SPR imaging coupled multi-protein MS analysis. Analyst 137:386−392

    Google Scholar 

  43. Fournaise E, Chaurand P (2015) Increasing specificity in imaging mass spectrometry: high spatial fidelity transfer of proteins from tissue sections to functionalized surfaces. Anal Bioanal Chem 407:2159–2166

    Article  CAS  PubMed  Google Scholar 

  44. Li M, Xu J, Zheng Q, Guo C, Chen Y (2022) Chemical-based surface plasmon resonance imaging of fingerprints. Anal Chem 94:7238–7245. https://doi.org/10.1021/acs.analchem.2c00389

    Article  CAS  PubMed  Google Scholar 

  45. Rizza C, Fantasia M, Palange E, Alecci M, Galante A (2019) Harnessing surface plasmons for magnetic resonance imaging applications. Phys Rev Appl 12:044023-1–044023-6

    Google Scholar 

  46. Ly N, Foley K, Tao N (2007) Integrated label-free protein detection and separation in real time using confined surface plasmon resonance imaging. Anal Chem 79:2546–2551

    Article  CAS  PubMed  Google Scholar 

  47. Whelan RJ, Zare RN (2003) Surface plasmon resonance detection for capillary electrophoresis separations. Anal Chem 75:1542–1547

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2023). Challenges and Prospects. In: Surface Plasmon Resonance Imaging. Lecture Notes in Chemistry, vol 95. Springer, Singapore. https://doi.org/10.1007/978-981-99-3118-7_9

Download citation

Publish with us

Policies and ethics