Skip to main content

Process and Bioprocess Analysis

  • Chapter
  • First Online:
Surface Plasmon Resonance Imaging

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 95))

  • 144 Accesses

Abstract

Generally speaking, there are two typical types of processes before us, the intermittent and the continuous. The intermittent processes can be exemplified by fermentation or reaction in tanks, steelmaking in furnaces and so forth, while the continuous processes can be found everywhere, for example, atmosphere system, water flow, life growth, chemical changes and industrial and agricultural productions. All the processes contain fast and/or slowly changing parameters that may need to be measured in real time or with a delay, depending on our aim (i.e., study or control of the processes). Usually, physical and chemical (including biochemical) parameters are of interest, which can now be measured with either contact or contactless sensors and/or analyzers. The contactless measurements are generally realized by optical, electromagnetic, electronic and mechanical principles, while the contact measurements are often achieved through separation techniques. Physical parameters are somehow easer to measure with contactless sensors than chemicals and biochemical. The non-physical parameters are often buried in complex environments; therefore, advanced sample preparation and separation techniques are required to “reveal” the parameters by removal of the background impact. Usually, single and simple parameters are often easy to measure in real time, while multiple and complex parameters may be measured with various delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonastre A, Ors R, Capella JV, Fabra MJ, Peris M (2005) In-line chemical analysis of wastewater: present and future trends. Trends Anal Chem 24:128–137

    Article  CAS  Google Scholar 

  2. Rathore AS, Bhambure R, Ghare V (2010) Process analytical technology (PAT) for biopharmaceutical products. Anal Bioanal Chem 398:137–154. https://doi.org/10.1007/s00216-010-3781-x

    Article  CAS  PubMed  Google Scholar 

  3. IEC TR 63176, Process analysis technology systems as part of safety instrume. Edition 1.0, 2019-01

    Google Scholar 

  4. Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 110:7998–8003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Filonov GS, Moon JD, Svensen N, Jaffrey SR (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc 136:16299–16308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mayer G, Ahmed M-SL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5:1993–2004

    Google Scholar 

  9. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  PubMed  Google Scholar 

  10. Xu L, Yan W, Ma W, Kuang H, Wu X, Liu L, Zhao Y, Wang L, Xu C (2015) SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Adv Mater 27:1706–1711

    Article  CAS  PubMed  Google Scholar 

  11. Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence Imaging of cellular metabolites with RNA. Science 335:1194–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen Q, Xu L, Zhao L, Wu D, Fan Y, Zhou Y, OuYang WH, Xu X, Zhang Z, Song M (2013) Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv Mater 25:2368–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mo R, Jiang T, DiSanto R, Tai W, Gu Z (2014) ATP-triggered anticancer drug delivery. Nat Commun 5:3364. https://doi.org/10.1038/ncomms4364

    Article  CAS  PubMed  Google Scholar 

  14. Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem Int Ed 46:6408–6418. https://doi.org/10.1002/anie.200604524

    Article  CAS  Google Scholar 

  15. Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    Article  CAS  PubMed  Google Scholar 

  16. Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185

    Article  CAS  PubMed  Google Scholar 

  17. Duan N, Gong WH, Wu SJ, Wang ZP (2017) An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine. Anal Chim Acta 961:100–105

    Article  CAS  PubMed  Google Scholar 

  18. Luo Z, Zhou H, Jiang H, Ou H, Li X, Zhang L (2015) Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection. Analyst 140:2664–2670

    Article  CAS  PubMed  Google Scholar 

  19. Hünniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal Chem 86:10940–10947

    Article  PubMed  Google Scholar 

  20. Müller J, El-Maarri O, Oldenburg J, Pötzsch B, Mayer G (2008) Monitoring the progression of the in vitro selection of nucleic acid aptamers by denaturing high-performance liquid chromatography. Anal Bioanal Chem 390:1033–1037

    Article  PubMed  Google Scholar 

  21. Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R, Wang P, Zhao Q (2014) Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal Chem 86:6572–6579

    Article  CAS  PubMed  Google Scholar 

  22. Spiga FM, Maietta P, Guiducci C (2015) More DNA–aptamers for small drugs: a capture–SELEX coupled with surface plasmon resonance and high-throughput sequencing. ACS Comb Sci 17:326–333

    Article  CAS  PubMed  Google Scholar 

  23. Bawazer LA, Newman AM, Gu Q, Ibish A, Arcila M, Cooper JB, Meldrum FC, Morse DE (2014) Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering. ACS Nano 8:387–395

    Article  CAS  PubMed  Google Scholar 

  24. Wen JD, Gray DM (2004) Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX. Nucleic Acids Res 32:e182. https://doi.org/10.1093/nar/gnh179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lai YT, DeStefano JJ (2011) A primer-free method that selects high-affinity singlestranded DNA aptamers using thermostable RNA ligase. A primer-free method that selects high-affinity single-stranded DNA aptamers using thermostable RNA ligase. Anal Biochem 414:246–253

    Google Scholar 

  26. Pan W, Xin P, Clawson GA (2008) Minimal primer and primer-free SELEX protocols for selection of aptamers from random DNA libraries. Biotechniques 44:351–360

    Article  CAS  PubMed  Google Scholar 

  27. Jarosch F, Buchner K, Klussmann S (2006) In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res 34:e86. https://doi.org/10.1093/nar/gkl463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsao S-M, Lai J-C, Horng H-E, Liu T-C, Hong C-Y (2017) Generation of aptamers from A primer-free randomized ssDNA library using magnetic-assisted rapid aptamer selection. Sci Rep 7:45478. https://doi.org/10.1038/srep45478

  29. Ouellet E, Lagally ET, Cheung KC, Haynes CA (2014) A simple method for eliminating fixed-region interference of aptamer binding during SELEX. Biotechnol Bioeng 111:2265–2279

    Article  CAS  PubMed  Google Scholar 

  30. Jia W, Li H, Wilkop T, Liu X, Yu X, Cheng Q, Xu D, Chen H-Y (2018) Silver decahedral nanoparticles empowered SPR imaging-SELEX for high throughput screening of aptamers with real-time assessment. Biosens Bioelectron 109:206–213

    Article  CAS  PubMed  Google Scholar 

  31. Jia W, Lu Z, Yang H, Li H, Xu D (2018) Elimination terminal fixed region screening and high-throughput kinetic determination of aptamer for lipocalin-1 by surface plasmon resonance imaging. Anal Chim Acta 1043:158–166

    Article  CAS  PubMed  Google Scholar 

  32. Ngubane NA, Gresh L, Pym A, Rubin EJ, Khati M (2014) Selection of RNA aptamers against the M. tuberculosis EsxG protein using surface plasmon resonance-based SELEX. Biochem Biophys Res Commun 449:114–119

    Google Scholar 

  33. Hong SL, Wan YT, Tang M, Pang DW, Zhang ZL (2017) Multifunctional screening platform for the highly efficient discovery of aptamers with high affinity and specificity. Anal Chem 89:6535–6542

    Article  CAS  PubMed  Google Scholar 

  34. Misono TS, Kumar PKR (2005) Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 342:312–317

    Article  CAS  PubMed  Google Scholar 

  35. Dausse E, Barre A, Aime A, Groppi A, Rico A, Ainali C, Salgado G, Palau W, Daguerre E, Nikolski M, Toulme JJ, Di Primo C (2016) Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation. Biosens Bioelectron 80:418–425

    Article  CAS  PubMed  Google Scholar 

  36. Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label. Anal Chem 84:3703–3709

    Article  CAS  PubMed  Google Scholar 

  37. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Google Scholar 

  38. Li MH, Choi SK, Leroueil PR, Baker JR Jr (2014) Evaluating binding avidities of populations of heterogeneous multivalent ligand-functionalized nanoparticles. ACS Nano 8:5600–5609

    Article  CAS  PubMed  Google Scholar 

  39. Polastro ET (1996) Managing primary process development. In: Barnacal PA (ed) Pharmaceutical manufacturing international. Sterling Publications Ltd., London, pp 67–70

    Google Scholar 

  40. Karlsson R, Kullman-Magnusson M, Hämäläinen MD, Remaeus A, Andersson K, Borg P, Gyzander E, Deinum J (2000) Biosensor analysis of drug–target interactions: direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors. Anal Biochem 278:1–13

    Article  CAS  PubMed  Google Scholar 

  41. Myszka DG, Rich RL (2000) Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technol Today 3:310–317

    Article  CAS  PubMed  Google Scholar 

  42. Banaszynski LA, Liu CW, Wandless TJ (2005) Characterization of the FKBP rapamycin FRB ternary complex. J Am Chem Soc 127:4715–4721

    Article  CAS  PubMed  Google Scholar 

  43. Kanoh N, Kyo M, Inamori K, Ando A, Asami A, Nakao A, Osada H (2006) SPR imaging of photo-cross-linked small-molecule arrays on gold. Anal Chem 78:2226–2230

    Article  CAS  PubMed  Google Scholar 

  44. Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392

    Article  CAS  PubMed  Google Scholar 

  45. Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Yang M, Zhou W, Johnson TG, Wang R, Zhu J (2015) Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs. Appl Surf Sci 355:570–576

    Article  CAS  Google Scholar 

  47. Di Primo C, Lebars I (2007) Determination of refractive index increment ratios for protein–nucleic acid complexes by surface plasmon resonance. Anal Biochem 368:148–155

    Article  PubMed  Google Scholar 

  48. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlén M (2005) The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26:501–510

    Article  CAS  PubMed  Google Scholar 

  49. DeCenzo MT, Park ST, Jarrett BP, Aldape RA, Futer O, Murcko MA, Livingston DJ (1996) FK506-binding protein mutational analysis: defining the active-site residue contributions to catalysis and the stability of ligand complexes. Protein Eng 9:173–180

    Article  CAS  PubMed  Google Scholar 

  50. McKeating KS, Aube A, Masson J-F (2016) Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst 141:429–449

    Article  CAS  PubMed  Google Scholar 

  51. Rogers ML, Boutelle MG, Cooks RG, Pemberton JE (2013) Real-time clinical monitoring of biomolecules. Annu Rev Anal Chem 6:427–453

    Article  CAS  Google Scholar 

  52. Von Lode P (2005) Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem 38:591–606

    Article  Google Scholar 

  53. Justino CIL, Rocha-Santos TA, Duarte AC (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Anal Chem 29:1172–1183

    Article  CAS  Google Scholar 

  54. Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135:2496–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang W, Guo S, Pereira Carvalho WS, Jiang Y, Serpe MJ (2016) Portable point-of-care diagnostic devices. Anal Methods 8:7847–7867

    Article  CAS  Google Scholar 

  56. Mariani S, Minunni M (2014) Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem 406:2303–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  58. Blaszykowski C, Sheikh S, Thompson M (2012) Surface chemistry to minimize fouling from blood-based fluids. Chem Soc Rev 41:5599–5612

    Article  CAS  PubMed  Google Scholar 

  59. Vaisocherova H, Brynda E, Homola J (2015) Functionalizable lowfouling coatings for label-free biosensing in complex biological media: advances and applications. Anal Bioanal Chem 407:3927–3953

    Article  CAS  PubMed  Google Scholar 

  60. Vaisocherova H, Sipova H, Visova I, Bockova M, Springer T, Ermini ML, Song X, Krejcik Z, Chrastinova L, Pastva O, Pimkova K, Dostalova Merkerova M, Dyr JE, Homola J (2015) Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens Bioelectron 70:226–231

    Article  CAS  PubMed  Google Scholar 

  61. Phillips KS, Han JH, Cheng Q (2007) Development of a “membrane cloaking” method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Anal Chem 79:899–907

    Article  CAS  PubMed  Google Scholar 

  62. Masson J-F, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS (2007) Quantitative measurement of cardiac markers in undiluted serum. Anal Chem 79:612−619

    Google Scholar 

  63. Trabucchi A, Guerra LL, Faccinetti NI, Iacono RF, Poskus E, Valdez SN (2012) Surface plasmon resonance reveals a different pattern of proinsulin autoantibodies concentration and affinity in diabetic patients. PLoS ONE 7:e33574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lewis KB, Hughes RJ, Epstein MS, Josephson NC, Kempton CL, Kessler CM, Key NS, Howard TE, Kruse-Jarres R, Lusher JM, Walsh CE, Watts RG, Ettinger RA, Pratt KP (2013) Phenotypes of allo- and autoimmune antibody responses to FVIII characterized by surface plasmon resonance. PLoS ONE 8:e61120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Socher I, Andrei-Selmer C, Bein G, Kroll H, Santoso S (2009) Low-avidity HPA-1a alloantibodies in severe neonatal alloimmune thrombocytopenia are detectable with surface plasmon resonance technology. Transfusion (Malden, MA, U S) 49:943−952

    Google Scholar 

  66. Grzywa R, Gorodkiewicz E, Burchacka E, Lesner A, Laudanski P, Lukaszewski Z, Sienczyk M (2014) Determination of cathepsin G in endometrial tissue using a surface plasmon resonance imaging biosensor with tailored phosphonic inhibitor. Eur J Obstet Gynecol Reprod Biol 182:38–42

    Article  CAS  PubMed  Google Scholar 

  67. Vaisocherova H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Homola J, Jiang S (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80:7894–7901

    Article  CAS  PubMed  Google Scholar 

  68. Vaisocherova H, Zhang Z, Yang W, Cao Z, Cheng G, Taylor AD, Piliarik M, Homola J, Jiang S (2009) Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization. Biosens Bioelectron 24:1924–1930

    Article  CAS  PubMed  Google Scholar 

  69. Bolduc OR, Clouthier CM, Pelletier JN, Masson J-F (2009) Peptide self-assembled monolayers for label-free and unamplified surface plasmon resonance biosensing in crude cell lysate. Anal Chem 81:6779–6788

    Article  CAS  PubMed  Google Scholar 

  70. Bolduc OR, Lambert-Lanteigne P, Colin DY, Zhao SS, Proulx C, Boeglin D, Lubell WD, Pelletier JN, Fethiere J, Ong H, Masson J-F (2011) Modified peptide monolayer binding His-tagged biomolecules for small ligand screening with SPR biosensors. Analyst 136:3142–3148

    Article  CAS  PubMed  Google Scholar 

  71. Rodriguez Emmenegger C, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB (2009) Interaction of blood plasma with antifouling surfaces. Langmuir 25:6328–6333

    Article  CAS  PubMed  Google Scholar 

  72. Haimovich J, Czerwinski D, Wong CP, Levy R (1998) Determination of anti-idiotype antibodies by surface plasmon resonance. J Immunol Methods 214:113–119

    Article  CAS  PubMed  Google Scholar 

  73. Thaler M, Metzger J, Schreiegg A, Denk B, Gleixner A, Hauptmann H, Luppa PB (2005) Immunoassay for sex hormone-binding globulin in undiluted serum is influenced by high-molecular-mass aggregates. Clin Chem 51:401–407

    Article  CAS  PubMed  Google Scholar 

  74. Lee C-Y, Gamble LJ, Grainger DW, Castner DG (2006) Mixed DNA/oligo (ethylene glycol) functionalized gold surfaces improve DNA hybridization in complex media. Biointerphases 1:82−92

    Google Scholar 

  75. Dutra RF, Mendes RK, Lins da Silva V, Kubota LT (2007) Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. J Pharm Biomed Anal 43:1744−1750

    Google Scholar 

  76. Carlsson J, Gullstrand C, Westermark GT, Ludvigsson J, Enander K, Liedberg B (2008) An indirect competitive immunoassay for insulin autoantibodies based on surface plasmon resonance. Biosens Bioelectron 24:876–881

    Article  CAS  Google Scholar 

  77. Bolduc OR, Masson J-F (2008) Monolayers of 3-mercaptopropylamino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors. Langmuir 24:12085–12091

    Article  CAS  PubMed  Google Scholar 

  78. Bolduc OR, Pelletier JN, Masson J-FSPR (2010) biosensing in crude serum using ultralow fouling binary patterned peptide SAM. Anal Chem 82:3699–3706

    Article  CAS  PubMed  Google Scholar 

  79. Garay F, Kisiel G, Fang A, Lindner E (2010) Surface plasmon resonance aided electrochemical immunosensor for CK-MB determination in undiluted serum samples. Anal Bioanal Chem 397:1873–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang R, Lajevardi-Khosh A, Choi S, Chae J (2011) Regenerative surface plasmon resonance (SPR) biosensor: Real-time measurement of fibrinogen in undiluted human serum using the competitive adsorption of proteins. Biosens Bioelectron 28:304–307

    Article  CAS  PubMed  Google Scholar 

  81. Brault ND, Gao C, Xue H, Piliarik M, Homola J, Jiang S, Yu Q (2010) Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens Bioelectron 25:2276–2282

    Article  CAS  PubMed  Google Scholar 

  82. Brault ND, White AD, Taylor AD, Yu Q, Jiang S (2013) Directly functionalizable surface platform for protein arrays in undiluted human blood plasma. Anal Chem 85:1447–1453

    Article  CAS  PubMed  Google Scholar 

  83. Arvinte T, Palais C, Green-Trexler E, Gregory S, Mach H, Narasimhan C, Shameem M (2013) Aggregation of biopharmaceuticals in human plasma and human serum Implications for drug research and development. mAbs 5:491−500

    Google Scholar 

  84. Jang HR, Wark AW, Baek SH, Chung BH, Lee HJ (2014) Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform. Anal Chem 86:814–819

    Article  CAS  PubMed  Google Scholar 

  85. Cappi G, Spiga FM, Moncada Y, Ferretti A, Beyeler M, Bianchessi M, Decosterd L, Buclin T, Guiducci C (2015) Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal Chem 87:5278–5285

    Article  CAS  PubMed  Google Scholar 

  86. Tokarzewicz A, Romanowicz L, Sveklo I, Gorodkiewicz E (2016) The development of a matrix metalloproteinase-1 biosensor based on the surface plasmon resonance imaging technique. Anal Methods 8:6428–6435

    Article  Google Scholar 

  87. Jiang ZX, Qin Y, Peng Z, Chen SH, Chen S, Deng CY, Xiang J (2014) The simultaneous detection of free and total prostate antigen in serum samples with high sensitivity and specificity by using the dual-channel surface plasmon resonance. Biosens Bioelectron 62:268–273

    Article  CAS  PubMed  Google Scholar 

  88. Vega B, Calle A, Sanchez A, Lechuga LM, Ortiz AM, Armelles G, Rodriguez-Frade JM, Mellado M (2013) Real-time detection of the chemokine CXCL12 in urine samples by surface plasmon resonance. Talanta 109:209–215

    Article  CAS  PubMed  Google Scholar 

  89. Pereira AD, Rodriguez-Emmenegger C, Surman F, Riedel T, Alles AB, Brynda E (2014) Use of pooled blood plasmas in the assessment of fouling resistance. RSC Adv 4:2318–2321

    Article  CAS  Google Scholar 

  90. Aubé A, Charbonneau DM, Pelletier JN, Masson J-F (2016) Response monitoring of acute lymphoblastic leukemia patients undergoing l-asparaginase therapy: Successes and challenges associated with clinical sample analysis in plasmonic sensing. ACS Sens 1:1358–1365

    Article  Google Scholar 

  91. Cornelius RM, Archambault JG, Berry L, Chan AKC, Brash JL (2002) Adsorption of proteins from infant and adult plasma to biomaterial surfaces. J Biomed Mater Res 60:622–632

    Article  CAS  PubMed  Google Scholar 

  92. Springer T, Bockova M, Homola J (2013) Label-free biosensing in complex media: a referencing approach. Anal Chem 85:5637–5640

    Article  CAS  PubMed  Google Scholar 

  93. Hide M, Yanase Y, Greaves MW (2007) Cutaneous mast cell receptors. Dermatol Clin 25:563–575

    Article  CAS  PubMed  Google Scholar 

  94. Yanase Y, Hide I, Mihara S, Shirai Y, Saito N, Nakata Y, Hide M, Sakai N (2011) A critical role of conventional protein kinase C in morphological changes of rodent mast cells. Immunol Cell Biol 89:149–159

    Article  CAS  PubMed  Google Scholar 

  95. Siraganian RP (2003) Mast cell signal transduction from the high-affinity IgE receptor. Curr Opin Immunol 15:639–646

    Article  CAS  PubMed  Google Scholar 

  96. Griese M, Kusenbach G, Reinhardt D (1990) Histamine release test in comparison to standard tests in diagnosis of childhood allergic asthma. Ann Allergy 65:46–51

    CAS  PubMed  Google Scholar 

  97. Valent P, Hauswirth AW, Natter S, Sperr WR, Bühring HJ, Valenta R (2004) Assays for measuring in vitro basophil activation induced by recombinant allergens. Methods 32:265–270

    Article  CAS  PubMed  Google Scholar 

  98. Sturm EM, Kranzelbinder B, Heinemann A, Groselj-Strele A, Aberer W, Sturm GJ (2010) CD203c-based basophil activation test in allergy diagnosis: characteristics and differences to CD63 upregulation. Cytometry B Clin Cytom 78:308–318

    Article  PubMed  Google Scholar 

  99. Hide M, Tsutsui T, Sato H, Nishimura T, Morimoto K, Yamamoto S, Yoshizato K (2002) Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal Biochem 302:28–37

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki H, Yanase Y, Tsutsui T, Ishii K, Hiragun T, Hide M (2008) Applying surface plasmon resonance to monitor the IgE-mediated activation of human basophils. Allergol Int 57:347–358

    Article  CAS  PubMed  Google Scholar 

  101. Tanaka A, Tanaka T, Suzuki H, Ishii K, Kameyoshi Y, Hide M (2006) Semipurification of the immunoglobulin E-sweat antigen acting on mast cells and basophils in atopic dermatitis. Exp Dermatol 15:283–290

    Article  CAS  PubMed  Google Scholar 

  102. Tanaka M, Hiragun T, Tsutsui T, Yanase Y, Suzuki H, Hide M (2008) Surface plasmon resonance biosensor detects the downstream events of active PKCβ in antigen-stimulated mast cells. Biosens Bioelectron 23:1652–1658

    Article  CAS  PubMed  Google Scholar 

  103. Nishijima H, Kosaihira A, Shibata J, Ona T (2010) Development of signaling echo method for cell-based quantitative efficacy evaluation of anti-cancer drugs in apoptosis without drug presence using high-precision surface plasmon resonance sensing. Anal Sci 26:529–534

    Article  CAS  PubMed  Google Scholar 

  104. Yanase Y, Suzuki H, Tsutsui T, Hiragun T, Kameyoshi Y, Hide M (2007) The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens Bioelectron 22:1081–1086

    Article  CAS  PubMed  Google Scholar 

  105. Yanase Y, Suzuki H, Tsutsui T, Uechi I, Hiragun T, Mihara S, Hide M (2007) Living cell positioning on the surface of gold film for SPR analysis. Biosens Bioelectron 23:562–567

    Article  CAS  PubMed  Google Scholar 

  106. Yanase Y, Araki A, Suzuki H, Tsutsui T, Kimura T, Okamoto K, Nakatani T, Hiragun T, Hide M (2010) Development of an optical fiber SPR sensor for living cell activation. Biosens Bioelectron 25:1244–1247

    Article  CAS  PubMed  Google Scholar 

  107. Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Hide M (2012) Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging. Biosens Bioelectron 32:62–68

    Article  CAS  PubMed  Google Scholar 

  108. Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Hide M (2013) Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy. Allergol Int 62:163–169

    Article  CAS  PubMed  Google Scholar 

  109. Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M (2014) Suface plasmon resonance for cell-based clinical diagnosis. Sensors 14:4948–4959

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hiragun T, Yanase Y, Kose K, Kawaguchi T, Uchida K, Tanaka S, Hide M (2012) Surface plasmon resonance-biosensor detects the diversity of responses against epidermal growth factor in various carcinoma cell lines. Biosens Bioelectron 32:202–207

    Article  CAS  PubMed  Google Scholar 

  111. Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Kumazaki N, Obara T, Hide M (2014) Clinical diagnosis of type I allergy by means of SPR imaging with less than a microliter of peripheral blood. Sens BioSens Res 2:43–48

    Google Scholar 

  112. Suraniti E, Sollier E, Calemczuk R, Livache T, Marche PN, Villiers MB, Roupioz Y (2007) Real-time detection of lymphocytes binding on an antibody chip using SPR imaging. Lab Chip 7:1206–1208

    Article  CAS  PubMed  Google Scholar 

  113. Cortès S, Villiers CL, Colpo P, Couderc R, Brakha C, Rossi F, Marche PN, Villiers MB (2011) Biosensor for direct cell detection, quantification and analysis. Biosens Bioelectron 26:4162–4168

    Article  PubMed  Google Scholar 

  114. Schasfoort RBM, Bentlage AEH, Stojanovic I, van der Kooi A, van der Schoot E, Terstappen LWMM, Vidarsson G (2013) Label-free cell profiling. Anal Biochem 439:4–6. https://doi.org/10.1016/j.ab.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  115. Houngkamhang N, Vongsakulyanon A, Peungthum P, Sudprasert K, Kitpoka P, Kunakorn M, Sutapun B, Amarit R, Somboonkaew A, Srikhirin T (2013) ABO blood-typing using an antibody array technique based on surface plasmon resonance imaging. Sensors 13:11913–11922

    Article  PubMed  PubMed Central  Google Scholar 

  116. Stojanović I, Schasfoort RBM, Terstappen LWMM (2014) Analysis of cell surface antigens by surface Plasmon resonance imaging. Biosensors Bioelectronics 52:36–43

    Article  PubMed  Google Scholar 

  117. Yanase Y, Hiragun T, Kaneko S, Gould HJ, Greaves MW, Hide M (2010) Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens Bioelectron 26:674–681

    Article  CAS  PubMed  Google Scholar 

  118. Horii M, Shinohara H, Iribe Y, Suzuki M (2011) Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager. Analyst 136:2706–2711

    Article  CAS  PubMed  Google Scholar 

  119. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2009) Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol 10:16. https://doi.org/10.1186/1471-2121-10-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2010) Using surface plasmon resonance imaging to probe dynamic interactions between cells and extracellular matrix. Cytometry A 77:895–903

    Article  PubMed  Google Scholar 

  121. Shinohara H, Sakai Y, Mir TA (2013) Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Anal Biochem 441:185–189

    Google Scholar 

  122. Zhang LL, Chen X, Wei HT, Li H, Sun JH, Cai HY, Chen JL, Cui DF (2013) An electrochemical surface plasmon resonance imaging system targeting cell analysis. Rev Sci Instrum 84:085005. https://doi.org/10.1063/1.4819027

  123. Chen CY, Chang CC, Yu C, Lin CW (2012) Clinical application of surface plasmon resonance-based biosensors for fetal fibronectin detection. Sensors 12:3879–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Erturk G, Ozen H, Tumer MA, Mattiasson B, Denizli A (2016) Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sens Actuators B 224:823–832

    Google Scholar 

  125. Gorodkiewicz E, Charkiewicz R, Rakowska A, Bajko P, Chyczewski L, Niklinski J (2012) SPR imaging biosensor for podoplanin: Sensor development and application to biological materials. Microchim Acta 176:337–343

    Article  CAS  Google Scholar 

  126. Sankiewicz A, Guszcz T, Mena-Hortelano R, Zukowski K, Gorodkiewicz E (2016) Podoplanin serum and urine concentration in transitional bladder cancer. Cancer Biomark 16:343–350

    Article  CAS  PubMed  Google Scholar 

  127. Gorodkiewicz E, Sieńczyk M, Regulska E, Grzywa R, Pietrusewicz E, Lesner A, Łukaszewski Z (2012) Surface plasmon resonance imaging biosensor for cathepsin G based on a potent inhibitor: development and applications. Anal Biochem 423:218–223

    Article  CAS  PubMed  Google Scholar 

  128. Lokate AMC, Beusink JB, Besselink GAJ, Pruijn GJM, Schasfoort RBM (2007) Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging. J Am Chem Soc 129:14013–14018

    Article  CAS  PubMed  Google Scholar 

  129. D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem 83:8711–8717

    Article  PubMed  Google Scholar 

  130. Huang H, Chen Y (2006) Surface plasmon resonance imaging studies for proteolytic hydrolysis of proteins. Chem Lett 35:372–373

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2023). Process and Bioprocess Analysis. In: Surface Plasmon Resonance Imaging. Lecture Notes in Chemistry, vol 95. Springer, Singapore. https://doi.org/10.1007/978-981-99-3118-7_8

Download citation

Publish with us

Policies and ethics