Skip to main content

Methodology

  • Chapter
  • First Online:
Surface Plasmon Resonance Imaging

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 95))

  • 132 Accesses

Abstract

This chapter discusses two aspects of methodology, the theoretical and practical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Z, Chen Y (2001) Detection of metal ions using wavelength interrogation surface plasmon resonance spectroscopy with calixarane derivatives as sensing films. Anal Lett 34:2609–2619

    Article  CAS  Google Scholar 

  2. Wang Z, Chen Y (2001) Analysis of mono- and oligo-saccharides by multi-wavelength surface plasmon resonance (SPR) spectroscopy. Carbohydr Res 332:209–213

    Article  Google Scholar 

  3. Han Z, Qi L, Shen G, Liu W, Chen Y (2007) Determination of chromium(VI) by surface Plasmon field-enhanced resonance light scattering. Anal Chem 79:5862–5866

    Article  CAS  PubMed  Google Scholar 

  4. Huang H, Huang S, Liu X, Zeng Y, Yu X, Liao B, Chen Y (2009) Label-free optical biosensors based on Au2S-coated gold nanorods. Biosens Bioelectron 24:3025–3029

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Zhao Q, Liu F, Huang H, Wang L, Yi S, Zeng Y, Chen Y (2013) Ultrasensitive determination of copper in complex biological media based on modulation of plasmonic properties of gold nanorods. Anal Chem 85:9142–9147

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Q, Huang H, Zhang L, Wang L, Zeng Y, Xia X, Liu F, Chen Y (2016) Strategy to fabricate naked-eye readout ultrasensitive plasmonic nanosensor based on enzyme mimetic gold nanoclusters. Anal Chem 88:1412–1418

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Xu J, Wang Y, Wang F, Chen Y (2016) A universal strategy for direct immobilization of intact bioactivity-conserved carbohydrates on gold nanoparticles. RSC Adv 6:85333–85339

    Article  CAS  Google Scholar 

  8. Yuan X, Chen Y (2012) Visual determination of Cu2+ through copper-catalysed in-situ formation of Ag nanoparticles. Analyst 137:4516–4523

    Google Scholar 

  9. Chen J, Xu J, Chen Y (2013) Interaction of straight chain alcohol vapors with self-assembled MOF film by surface plasmon resonance sensing and imaging. Chin Chem Lett 24:651–653

    Article  CAS  Google Scholar 

  10. Shen G, Han Z, Liu W, Chen Y (2007) Color surface plasmon resonance imaging of protein microdots arrays. Chem Lett 36:926–927

    Article  CAS  Google Scholar 

  11. Abelès F (1976) Surface electromagnetic waves ellipsometry. Surf Sci 56:237–251

    Article  Google Scholar 

  12. Kabashin AV, Patskovsky S, Grigorenko AN (2009) Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express 17:21191–21204

    Article  CAS  PubMed  Google Scholar 

  13. Kabashin AV, Nikitin PI (1997) Interferometer based on a surface-plasmon resonance for sensor applications. Quantum Electron 27:653–654

    Google Scholar 

  14. Kabashin AV, Nikitin PI (1998) Surface plasmon resonance interferometer for bio- and chemical-sensors. Opt Commun 150:5–8

    Google Scholar 

  15. Patskovsky S, Maisonneuve M, Meunier M, Kabashin AV (2008) Mechanical modulation method for ultra-sensitive phase measurements in photonics biosensing. Opt Express 16:21305–21314

    Google Scholar 

  16. Law W-C, Markowicz P, Yong K-T, Roy I, Baev A, Patskovsky S, Kabashin AV, Ho H-P, Prasad PN (2007) Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens Bioelectron 23:627–632

    Article  CAS  PubMed  Google Scholar 

  17. Markowicz PP, Law WC, Baev A, Prasad PN, Patskovsky S, Kabashin AV (2007) Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt Express 15:1745–1754

    Article  CAS  PubMed  Google Scholar 

  18. Jung LS, Campbell CT, Chinowsky TM, Mar M, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648

    Article  CAS  Google Scholar 

  19. Armstrong Jr SH, Budka MJE, Morrison KC, Hasson M (1947) Preparation and properties of serum and plasma proteins. XII. The refractive properties of the proteins of human plasma and certain purified fractions. J Am Chem Soc 69:1747–1753

    Google Scholar 

  20. McMeekin TL, Groves ML, Hipp NJ (1964) Refractive indices of amino acids, proteins, and related substances. In: Stekol JA (ed) Amino acids and serum proteins. Adv Chem 44:54–56. https://doi.org/10.1021/ba-1964-0044.ch004

  21. Darnell JE, Lodish H, Baltimore D (1990) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  22. Gölander C-G, Kiss E (1988) Protein adsorption on functionalized and ESCA-characterized polymer films studied by ellipsometry. J Colloid Interface Sci 121:240–253

    Google Scholar 

  23. Lide DR (ed) (1990) Handbook of chemistry physics, 71st edn. CRC Press, Boston

    Google Scholar 

  24. Chen J, Chen Y, Xu J, Zhang Y, Liao T (2012) Post-experimental denoising and background subtraction of surface plasmon resonance images for better quantification. Chemom Intell Lab Syst 114:56–63

    Article  CAS  Google Scholar 

  25. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70:1–87

    Article  CAS  Google Scholar 

  26. Yu H, Shan X, Wang S, Chen H, Tao N (2014) Molecular scale origin of surface plasmon resonance biosensors. Anal Chem 86:8992–8997

    Article  CAS  PubMed  Google Scholar 

  27. Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966

    Google Scholar 

  28. Bozhevolnyi SI, Coello V (1998) Elastic scattering of surface plasmon polaritons: modeling and experiment. Phys Rev B: Condens Matter Mater Phys 58:10899–10910

    Google Scholar 

  29. Yu H, Shan X, Wang S, Wang S, Tao N (2017) Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction. Anal Chem 89:2704–2707

    Article  CAS  PubMed  Google Scholar 

  30. Aust EF, Sawodny M, Ito S, Knoll W (1994) Surface plasmon and guided optical wave microscopies. Scanning 16:353–361

    Article  CAS  Google Scholar 

  31. Thiel AJ, Frutos AG, Jordan CE, Corn RM, Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 69:4948–4956

    Article  CAS  Google Scholar 

  32. Berger CEH, Beumer TAM, Kooyman RPH, Greve J (1998) Surface plasmon resonance multisensing. Anal Chem 70:703–706

    Article  CAS  Google Scholar 

  33. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  PubMed  Google Scholar 

  34. Lyon LA, Holliway WD, Natan MJ (1999) An improved surface plasmon resonance imaging apparatus. Rev Sci Instrum 70:2076–2081

    Article  CAS  Google Scholar 

  35. Rothenhäuslar B, Knoll W (1988) Surface plasmon microscopy. Nature 332:615–617

    Google Scholar 

  36. Zizlsperger M, Knoll W (1998) Multispot parallel on-line monitoring of interfacial binding reactions by surface plasmon microscopy. Prog Colloid Polym Sci 109:244–253

    Google Scholar 

  37. Huang H, Zhang S, Qi L, Yu X, Chen Y (2006) Microwave-assisted deposition of uniform thin gold film on glass surface. Surf Coat Technol 200:4389–4396

    Article  CAS  Google Scholar 

  38. Brockman JM, Frutos AG, Corn RM (1999) A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein−DNA interactions with surface plasmon resonance imaging. J Am Chem Soc 121:8044–8051

    Article  CAS  Google Scholar 

  39. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7

    Article  CAS  PubMed  Google Scholar 

  40. Camilone N, Chidsey CED, Liu G-Y, Scoles G (1993) Substrate dependence of the surface structure and chain packing of docosyl mercaptan self-assembled on the (111), (110) and (100) faces of single crystal gold. J Chem Phys 98:4234–4245

    Google Scholar 

  41. Jimenez A, Sarsa A, Blazquez M, Pineda T (2010) A molecular dynamics study of surfactant surface density of alkanethiol sefl-assembled monolayers on gold nanoparticles as a function of the radius. J Phys Chem C 114:21309–21314

    Article  CAS  Google Scholar 

  42. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Sel-assembled monolayers of thiols and dithiols on gold: new challenges of a well known system. Chem Soc Rev 39:1805–1834

    Article  CAS  PubMed  Google Scholar 

  43. Ulman A (1999) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  Google Scholar 

  44. Bryant MA, Pemberton JE (1991) Surface raman scattering of self-assembled monolayers form from 1-alkanethiols: behavior of films at gold and comparison to film at silver. J Am Chem Soc 113:8284–8293

    Google Scholar 

  45. Schoenfish MH, Pemberton JE (1998) Air stability of alkanethiol self-assmbled monolayers on silver and gold surfaces. J Am Chem Soc 120:4502–4513

    Google Scholar 

  46. Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG (1991) Comparison of the structures and wetting properties of self-assembled monolayes of n-alkanethiols on the coinage metal surfaces: copper, silver and gold. J Am Chem Soc 113:7152–7167

    Article  CAS  Google Scholar 

  47. Campos MAC, Trilling AK, Yang M, Giesbers M, Beekwilder J, Paulusse JMJ, Zuihof H (2011) Self-assembled functional organic monolayers on oxide-free copper. Langmuir 27:8126–8133

    Article  PubMed  Google Scholar 

  48. Laibinis PE, Whitesides GM (1992) Self-assembled monolayers of n-alkanethiols on copper are barrier films that protect the metal against oxidation by air. J Am Chem Soc 114:9022–9028

    Google Scholar 

  49. Volmer M, Stralmann M, Viefhaus H (1990) Electrochemical and electron spectroscopic investigation of iron surface modified with thiols. Surf Interface Anal 16:278–282

    Article  CAS  Google Scholar 

  50. Nozawa K, Nishihara H, Aramaki K (1997) Chemical modification of alkanethiol monolayers for protecting iron against corrosion. Corros Sci 39:1625–1639

    Article  CAS  Google Scholar 

  51. Nozawa K, Aramaki K (1999) One- and two-dimensional polymer films of modified alkanethiol monolayers for preveting iron from corrosion. Corros Sci 41:57–73

    Google Scholar 

  52. Inkpen MS, Liu Z-F, Li H, Campos LM, Neaton JB, Venkataraman L (2019) Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat Chem 11:351–358. https://doi.org/10.1038/s41557-019-0216-y

  53. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. d’Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T (2009) Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem Int Ed 48:3914–3921

    Article  CAS  Google Scholar 

  55. Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M (2013) Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv Funct Mater 23:1331–1340

    Article  CAS  Google Scholar 

  56. Yang W, Liu CJ, Chen Y (2018) Stability of polydopamine coatings on gold substrates inspected by surface plasmon resonance imaging. Langmuir 34:3565–3571

    Article  CAS  PubMed  Google Scholar 

  57. Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater 22:4711–4717

    Article  CAS  Google Scholar 

  58. Liebscher J, Mrówczyński R, Scheidt HA, Filip C, Hădade ND, Turcu R, Bende A, Beck S (2013) Structure of polydopamine: a never-ending story? Langmuir 29:10539–10548

    Article  CAS  PubMed  Google Scholar 

  59. Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, Gracio JJ, Toniazzo V, Ruch D (2011) Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir 27:2819–2825

    Article  CAS  PubMed  Google Scholar 

  60. d’Ischia M, Napolitano A, Ball V, Chen C-T, Buehler MJ (2014) Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res 47:3541–3550

    Article  CAS  PubMed  Google Scholar 

  61. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28:6428–6435

    Article  CAS  PubMed  Google Scholar 

  62. Ball V (2010) Impedance spectroscopy and zeta potential titration of dopa-melanin films produced by oxidation of dopamine. Colloids Surf A 363:92–97

    Article  CAS  Google Scholar 

  63. Kim BH, Lee DH, Kim JY, Shin DO, Jeong HY, Hong S, Yun JM, Koo CM, Lee H, Kim SO (2011) Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold. Adv Mater 23:5618–5622

    Article  CAS  PubMed  Google Scholar 

  64. Smolin EM, Tapoport L (1959) The chemistry of heterocyclic compounds, s-triazine and derivatives. Itersciences, New York

    Google Scholar 

  65. Bruckner H, Strecker B (1992) Various concepts for toppingsteam plants with gas turbines. J Chromatogr 627:97–105

    Google Scholar 

  66. Thurstojanme JT, Dudleyd JR, Kaiser DW, Hechenbleikner I, Schaefer FC, Holm-Hansen D (1951) Cyanuric chloride derivatives. I. Aminochloro-s-triazines. J Am Chem Soc 73:2981–2983

    Google Scholar 

  67. Blotny G (2006) Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron 62:9507–9522

    Article  CAS  Google Scholar 

  68. Jan JZ, Huang BH, Lin JJ (2003) Facile preparation of amphiphilic oxyethylene–oxypropylene block copolymers by selective triazine coupling. Polymer 44:1003–1011

    Article  CAS  Google Scholar 

  69. Steffensen MB, Simanek EE (2003) Chemoselective building blocks for dendrimers from relative reactivity data. Org Lett 5:2359–2361

    Google Scholar 

  70. Palazon F, Benavides CM, Leonard D, Souteyrand E, Chevolot Y, Cloarec JP (2014) Carbodiimide/NHS derivatization of COOH-terminated SAMs: activation or byproduct formation? Langmuir 30:4545–4550

    Article  CAS  PubMed  Google Scholar 

  71. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    Google Scholar 

  72. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631

    Google Scholar 

  73. Li D, Guo Z, Liu C, Li J, Xu W, Chen Y (2017) Quantification of near-attomole gibberellins in floral organs dissected from a single Arabidopsis thaliana flower. Plant J 91:547–557

    Article  CAS  PubMed  Google Scholar 

  74. Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aquaus-media. Bioconjug Chem 6:123–130

    Google Scholar 

  75. Kuo JW, Swann DA, Prestwich GD (1991) Chemical modification of hyaluronic acid by carbodiimides. Bioconjug Chem 2:232–241

    Article  CAS  PubMed  Google Scholar 

  76. Pouyani T, Kuo JW, Harbison GS, Prestwich GD (1992) Solid-state NMR of N-acylureas derived from the reaction of hyaluronic acid with isotopically-labeled carbodiimides. J Am Chem Soc 114:5972–5976

    Article  CAS  Google Scholar 

  77. Kurzer F, Douraghi K (1967) Advances in chemistry of carbodiimides. Chem Rev 67:107–152

    Google Scholar 

  78. Kishikawa K, Nakahara S, Nishikawa Y, Kohmoto S, Yamamoto M (2005) A ferroelectrically switchable columnar liquid crystal phase with achiral molecules: superstructures and properties of liquid crystalline ureas. J Am Chem Soc 127:2565–2571

    Article  CAS  PubMed  Google Scholar 

  79. Nyangulu JM, Galka MM, Jadhav A, Gai Y, Graham CM, Nelson KM, Cutler AJ, Taylor DC, Banowetz GM, Abrams SR (2005) An affinity probe for isolation of abscisic acid-binding proteins. J Am Chem Soc 127:1662–1664

    Article  CAS  PubMed  Google Scholar 

  80. Grant EB, Weiss JM, Branum S, Hayden S, Johnson S, Guiadeen D, Murray WV, Macielag MJ (2005) The synthesis of (9S)-9-alkyl-9-hydroxyerythromycin A derivatives and their ketolides. Tetrahedron Lett 46:2731–2735

    Article  CAS  Google Scholar 

  81. Davis FA, Deng J (2004) Asymmetric synthesis of syn-(2R,3S)- and anti-(2S,3S)-ethyl diamino-3-phenylpropanoates from N-(benzylidene)-p-toluenesulfinamide and glycine enolates. Org Lett 6:2789–2792

    Google Scholar 

  82. White JD, Hansen JD (2005) Total synthesis of (-)-7-epicylindrospermopsin, a toxic metabolite of the freshwater cyanobacterium aphanizomenon ovalisporum, and assignment of its absolute configuration. J Org Chem 70:1963–1977

    Google Scholar 

  83. Iliev B, Linden A, Heimgartner H (2003) An unexpected formation of a 14-membered cyclodepsipeptide. Helv Chim Acta 86:3215–3234

    Article  CAS  Google Scholar 

  84. Ella-Menye J-R, Sharma V, Wang G (2005) New synthesis of chiral 1,3-oxazinan-2-ones from carbohydrate derivatives. J Org Chem 70:463–469

    Article  CAS  PubMed  Google Scholar 

  85. Dandapani S, Curran DP (2004) Second generation fluorous DEAD reagents have expanded scope in the Mitsunobu reaction and retain convenient separation features. J Org Chem 69:8751–8757

    Google Scholar 

  86. Pedras MSC, Chumala PB, Quail JW (2004) Chemical mediators: the remarkable structure and host-selectivity of depsilairdin, a sesquiterpenic depsipeptide containing a new amino acid. Org Lett 6:4615–4617

    Article  CAS  PubMed  Google Scholar 

  87. Vaidyanathan R, Kalthod VG, Ngo DP, Manley JM, Lapekas SP (2004) Amidations using N, N′-carbonyldiimidazole: remarkable rate enhancement by carbon dioxide. J Org Chem 69:2565–2568

    Article  CAS  PubMed  Google Scholar 

  88. Li MH, Choi SK, Leroueil PR, Baker JR Jr (2014) Evaluating binding avidities of populations of heterogeneous multivalent ligand-functionalized nanoparticles. ACS Nano 8:5600–5609

    Article  CAS  PubMed  Google Scholar 

  89. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Google Scholar 

  90. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216

    Google Scholar 

  91. Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV (2008) Ruthenium-catalyzed azide–alkyne cycloaddition: scope and mechanism. J Am Chem Soc 130:8923–8930

    Article  CAS  PubMed  Google Scholar 

  92. Hoyle CE, Lee TY, Roper T (2004) Thiol–enes: Chemistry of the past with promise for the future. J Polym Sci Part A: Polym Chem 42:5301–5338

    Google Scholar 

  93. Becer CR, Hoogenboom R, Schubert US (2009) Klick-Chemie jenseits von metallkatalysierten Cycloadditionen. Angew Chem 121:4998–5006

    Article  Google Scholar 

  94. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol-ene chemistry. J Polym Sci Part A: Polym Chem 48:743–750

    Google Scholar 

  95. Ke Z, Melisa AL, Ying W, Gregory NT (2011) Universal cyclic polymer templates. J Am Chem Soc 133:6906–6909

    Article  Google Scholar 

  96. Hoyle CE, Browman CN (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Google Scholar 

  97. Hutchins RO, Hutchins MK (1991) Reduction of C=O to CHNH by metal hybrids. In: Trost BN, Fleming I (eds) Comprehensive organic synthesis, vol 8. Pergamon Press, New York

    Google Scholar 

  98. Albdel-Magid AF, Carson KG, Harris BD, Maryanoff CA, Shah RD (1996) Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J Org Chem 61:3849–3862

    Google Scholar 

  99. Borch RF, Bernstein MD, Durst HD (1971) Cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc 93:2897–2904

    Article  CAS  Google Scholar 

  100. Borch RF, Durst HD (1969) Lithium cyanohydridoborate, a versatile new reagent. J Am Chem Soc 91:3996–3997

    Google Scholar 

  101. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: reviews. Sens Actuators B Chem 54:3–15

    Article  CAS  Google Scholar 

  102. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63

    Article  CAS  PubMed  Google Scholar 

  103. Frey BL, Jordan CE, Kornguth S, Corn RM (1995) Control of the specific adsorption of proteins onto gold surfaces with poly(L-lysine) monolayers. Anal Chem 67:4452–4457

    Article  CAS  Google Scholar 

  104. Jordan CE, Corn RM (1997) Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces. Anal Chem 69:1449–1456

    Google Scholar 

  105. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7

    Google Scholar 

  106. Shumaker-Parry JS, Campbell CT (2004) Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal Chem 76:907–917

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y. (2023). Methodology. In: Surface Plasmon Resonance Imaging. Lecture Notes in Chemistry, vol 95. Springer, Singapore. https://doi.org/10.1007/978-981-99-3118-7_4

Download citation

Publish with us

Policies and ethics