Skip to main content

Nuclear Instrumentation

  • Chapter
  • First Online:
Nuclear Science and Technology

Part of the book series: Nuclear Science and Technology ((NST))

  • 233 Accesses

Abstract

All detection instruments with radionuclide sources or radiation sources and nuclear radiation detectors are collectively referred to as radionuclide instrumentation (also known as nuclear instrumentation or isotope instrumentation). Nuclear instrumentation is generally composed of a radioactive source or radiation source, a nuclear radiation detector, an electrical converter, secondary instrumentation, and other components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • An, J., Xiang, X., Wu, Z., Zhou, L., Wang, L., & Wu, H. (2003). Progress on developing 60Co container inspection systems. Applied Radiation and Isotopes, 58(3), 315–320.

    Article  Google Scholar 

  • Anand, R. S., & Kumar, P. (2006). Flaw detection in radiographic weld images using morphological approach. NDT & E International, 39(1), 29–33.

    Article  Google Scholar 

  • Anand, R. S., & Kumar, P. (2009). Flaw detection in radiographic weldment images using morphological watershed segmentation technique. NDT & E International, 42(1), 2–8.

    Article  Google Scholar 

  • Arkhinov, G., Romashov, V., & Vazhdaev, M. (1975). Back-scattering gamma-ray flaw detector and thickness gauge. Soviet Journal of Nondestructive Testing (English Translation) (United States), 11(6).

    Google Scholar 

  • Belcher, D., Sack, H., & Cuykendall, T. (1952). Nuclear meters for measuring soil density and moisture in thin surface layers (Vol. 161). Civil Aeronautics Administration Technical Development and Evaluation Center.

    Google Scholar 

  • Boerner, H., & Strecker, H. (1988). Automated X-ray inspection of aluminum castings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(1), 79–91.

    Article  Google Scholar 

  • Bukowski, R., & Mulholland, G. W. (1978). Smoke detector design and smoke properties (Vol. 973). Department of Commerce, National Bureau of Standards, National Engineering.

    Google Scholar 

  • Cai, S., & Zhou, Z. (1999). Sealed techniques of 85 Kr gas sources. Journal of Isotopes, 12(2), 85–89.

    Google Scholar 

  • Caldwell, R. L. (1969). Nuclear logging methods. Isotopes & Radiation Technology.

    Google Scholar 

  • De Chiffre, L., Carmignato, S., Kruth, J.-P., Schmitt, R., & Weckenmann, A. (2014). Industrial applications of computed tomography. CIRP Annals, 63(2), 655–677.

    Article  Google Scholar 

  • Ferrucci, M., Leach, R. K., Giusca, C., Carmignato, S., & Dewulf, W. (2015). Towards geometrical calibration of X-ray computed tomography systems—A review. Measurement Science and Technology, 26(9), 092003.

    Article  ADS  Google Scholar 

  • Hearst, J. R., & Nelson, P. H. (1985). Well logging for physical properties.

    Google Scholar 

  • Huang, Y., Cong, P., & Yuan, Y. (2005). The design and realization of the main control station of 60Co container CT inspection system. Nuclear Electronics and Detection Technology, 25(6), 620–622.

    Google Scholar 

  • Korzhik, M., & Gektin, A. (2017). Engineering of scintillation materials and radiation technologies. Springer.

    Google Scholar 

  • Lane, D., Torchinsky, B., & Spinks, J. (1953). Determining soil moisture and density by nuclear radiations. Paper presented at the Symposium on the Use of Radioisotopes in Soil Mechanics.

    Google Scholar 

  • Lehmke, J., Bogner, U., Felsenberg, D., Peters, H., & Schleusener, H. (1992). Determination of bone mineral density by quantitative computed tomography and single photon absorptiometry in subclinical hyperthyroidism: A risk of early osteopaenia in post-menopausal women. Clinical Endocrinology, 36(5), 511–517.

    Article  Google Scholar 

  • Li, Z., Zhou, F., Yao, H., Ci, Z., Yang, Z., & Jin, Z. (2021). Halide perovskites for high-performance X-ray detector. Materials Today, 48, 155–175.

    Article  Google Scholar 

  • Liao, T. W., & Li, Y. (1998). An automated radiographic NDT system for weld inspection: Part II—Flaw detection. NDT & E International, 31(3), 183–192.

    Article  Google Scholar 

  • Liu, H. (2017). Principles and applications of well logging. Springer.

    Google Scholar 

  • Manchun, L., Hongchang, Y., & Zhikang, Z. (2006). A new method of weighing materials online. Nuclear Electronics and Detection Technology, 26.

    Google Scholar 

  • Martz, H., Azevedo, S., Brase, J., Waltjen, K., & Schneberk, D. (1990). Computed tomography systems and their industrial applications. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 41(10–11), 943–961.

    Google Scholar 

  • Melcher, C., Schweitzer, J., Manente, R., & Peterson, C. (1991). Applicability of GSO scintillators for well logging. IEEE Transactions on Nuclear Science, 38(2), 506–509.

    Article  ADS  Google Scholar 

  • Mery, D. (2011). Automated detection in complex objects using a tracking algorithm in multiple X-ray views. Paper presented at the CVPR 2011 Workshops.

    Google Scholar 

  • Mills, W., Stromswold, D., & Allen, L. (1991). Advances in nuclear oil well logging. Nuclear Geophysics, 5(3), 209–227.

    Google Scholar 

  • Nikitin, A., Fedorov, A., & Korjik, M. (2013). Novel glass ceramic scintillator for detection of slow neutrons in well logging applications. IEEE Transactions on Nuclear Science, 60(2), 1044–1048.

    Article  ADS  Google Scholar 

  • Ran, H., Zunnian, L., & Aige, R. (2011). Experimental study of spectrum analytical method by natural gamma ray energy spectrum. Paper presented at the 2011 4th International Congress on Image and Signal Processing.

    Google Scholar 

  • Sharma, A., Weindorf, D. C., Man, T., Aldabaa, A. A. A., & Chakraborty, S. (2014). Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma, 232, 141–147.

    Article  ADS  Google Scholar 

  • Stepanov, V., Ivanov, O., Potapov, V., Sudarkin, A., & Urutskoev, L. (1999). Application of gamma-ray imager for non-destructive testing. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422(1–3), 724–728.

    Article  ADS  Google Scholar 

  • Tomasek, M., Stukheil, K., & Wilhelmova, L. (1986). Use of 241Am as reference source of CaF2 (Eu) scintillation detector in counting radioactive gaseous samples. Radioisotopy, 27(2–3), 87–92.

    Google Scholar 

  • Wallingford, R. M., Siwek, E., & Gray, J. (1992). Application of two-dimensional matched filters to X-ray radiographic flaw detection and enhancement. In Review of progress in quantitative nondestructive evaluation (pp. 879–886). Springer.

    Google Scholar 

  • Wang, M. (2015). Industrial tomography: Systems and applications. Elsevier.

    Google Scholar 

  • Xiqi, Q. (1989). Advantages of using sup 192Ir gamma-ray flaw detector for some products. Journal of Isotopes (China), 2(3).

    Google Scholar 

  • Yongkang, W. (2001). Scintillation detectors used in industry nuclear instrument. Nuclear Electronics and Detection Technology, 21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Harbin Engineering University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, S. (2023). Nuclear Instrumentation. In: Nuclear Science and Technology. Nuclear Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3087-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3087-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3086-9

  • Online ISBN: 978-981-99-3087-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics