Skip to main content

Running Regular Research Seminar Online

  • Conference paper
  • First Online:
Agents and Multi-agent Systems: Technologies and Applications 2023 (KES-AMSTA 2023)

Abstract

We present profile and experience of a hybrid seminar on fundamental issues of software engineering, theory and experimental programming ru-STEP (= russian seminar on Software Engineering, Theory and Experimental Programming) during 30 months of its history. The seminars was launched 3 months before COVID-19 outbreak, worked during two years of COVID-19, survived and continues its work after COVID-19 restrictions were dropped. We do not attempt to provide a comprehensive study or systematic review of world-wide experience to run online research seminars (especially in time of COVID-19) that need more studies and could be a topic for later research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anureev, I.S.: Operational ontological approach to formal programming language specification. Prog. Comput. Softw. 35(1), 35–42 (2009)

    Article  MATH  Google Scholar 

  2. Belevantsev, A., Avetisyan, A.: Multi-level static analysis for finding error patterns and defects in source code. In: Petrenko, A., Voronkov, A. (eds.) PSI 2017, LNCS, vol. 10742. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4_3

  3. Bodin, E.V., Garanina, N.O., Shilov, N.V.: Mars Robot puzzle (a multiagent approach to the Dijkstra problem). Model. Anal. Inform. Syst. 18(2), 113–128 (2011) (In Russian)

    Google Scholar 

  4. Burmyakov, A., Nikolić, B.: An exact comparison of global, partitioned, and semi-partitioned fixed-priority real-time multiprocessor schedulers. J. Syst. Arch. 121, 102313 (2021)

    Google Scholar 

  5. Carrasquel Gamez, J.C., Lomazova, I.A., Rivkin, A.: Modeling trading systems using Petri net extensions. In: Proceedings of the International Workshop on Petri Nets and Software Engineering Co-located with 41st International Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS 2020), vol. 2651, pp. 118–137. CEUR Workshop Proceedings (2020)

    Google Scholar 

  6. Davies, A., Seaton, A., Tonooka, C., White, J.: Covid-19, online workshops, and the future of intellectual exchange. Rethinking Hist. 25(2), 224–241 (2021). https://doi.org/10.1080/13642529.2021.1934290

  7. Denney, E., Fischer, B.: Explaining verification conditions. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008, LNCS, vol. 5140, pp. 145–159. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79980-1_12

  8. Garanina, N., Anureev, I., Sidorova, E., Koznov, D., Zyubin, V., Gorlatch, S.: An ontology-based approach to support formal verification of concurrent systems. In: Sekerinski, E., Moreira, N., Oliveira, J.N., Ratiu, D., Guidotti, R., Farrell, M., Luckcuck, M., Marmsoler, D., Campos, J., Astarte, T., Gonnord, L., Cerone, A., Couto, L., Dongol, B., Kutrib, M., Monteiro, P., Delmas, P. (eds.) FM 2019, LNCS, vol. 12232, pp. 114–130. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54994-7_9

  9. Juell, P., Brekke, D., Vetter, R., Wasson, J.: Evaluation of computer conferencing tools for conducting collaborative seminars on the internet. Int. J. Educ. Telecommun. 2(4), 233–248 (1996)

    Google Scholar 

  10. Kogtenkov, A.V.: Mechanically proved practical local null safety. Proc. Inst. Syst. Prog. RAS 28(5), 27–54 (2016)

    Google Scholar 

  11. Kondratyev, D., Promsky, A.: Correctness of proof strategy for the sisal program verification. In: Proceedings of the 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON-2019), pp. 641–646. IEEE (2019)

    Google Scholar 

  12. Kondratyev, D.A., Promsky, A.V.: Developing a self-applicable verification system. Theory and practice. Autom. Control Comput. Sci. 49(7), 445–452 (2015)

    Google Scholar 

  13. Kondratyev, D., Promsky, A.: Proof strategy for automated sisal program verification. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019, LNCS, vol. 11771, pp. 113–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29852-4_9

  14. Kondratyev, D.A., Nepomniaschy, V.A.: Automation of C program deductive verification without using loop invariants. Prog. Comput. Softw. 48(5), 331–346 (2022)

    Article  MathSciNet  Google Scholar 

  15. Kudasov, N., Sim, V.: Formalizing \(\varphi \)-calculus: a purely object-oriented calculus of decorated objects (2022). CoRR abs/2204.07454, https://arxiv.org/abs/2204.07454

  16. Kudasov, N.: E-unification for second-order abstract syntax (2023). CoRR abs/2302.05815, https://arxiv.org/abs/2302.05815

  17. Kukharenko, V.A., Ziborov, K.V., Sadykov, R.F., Naumchev, A.V., Rezin, R.M., Merkin-Janson, L.A.: InnoChain: a distributed ledger for industry with formal verification on all implementation levels. Model. Anal. Inform. Syst. 27(4), 454–471 (2020) (In Russian)

    Google Scholar 

  18. Maryasov, I.V., Nepomniaschy, V.A., Promsky, A.V., Kondratyev, D.A.: Automatic C program verification based on mixed axiomatic semantics. Autom. Control Comput. Sci. 48(7), 407–414 (2014)

    Article  Google Scholar 

  19. Mazzara, M., Succi, G., Tormasov, A.: Online and blended education: after COVID-19. In: Innopolis University—From Zero to Hero. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98599-8_10

  20. Moore, J.S.: Milestones from the pure lisp theorem prover to ACL2. Formal Aspects Comput. 31(6), 699–732 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moriconi, M., Schwartz, R.L.: Automatic construction of verification condition generators from Hoare logics. In: Even, S., Kariv, O. (eds.) ICALP 1981, LNCS, vol. 115, pp. 363–377. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10843-2_30

  22. Naumchev, A: Seamless object-oriented requirements. In: Proceedings of the 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON-2019), pp. 743–748. IEEE (2019)

    Google Scholar 

  23. Nepomniaschy, V.A.: Symbolic method of verification of definite iterations over altered data structures. Prog. Comput. Softw. 31(1), 1–9 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pitts, A.M., Matthiesen, J., Derikx, J.: A dependent type theory with abstractable names. Electron. Notes Theor. Comput. Sci. 312(C), 19–50 (2015)

    Google Scholar 

  25. Romanov, V., Ivanov, V.: Prediction of types in python with pre-trained graph neural networks. In: Proceedings of the 2022 Ivannikov Memorial Workshop (IVMEM-2022), pp. 54–60. IEEE (2022)

    Google Scholar 

  26. Rosu, G.: Matching logic. Logical Methods Comput. Sci. 13(4), 1–61 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Shilov, N., Satekbayeva, A., Vorontsov, A.: Alias calculus for a simple imperative language with decidable pointer arithmetic. Bull. Novosibirsk Comput. Center. Ser. Comput. Sci. (37), 131–147 (2014)

    Google Scholar 

  28. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008, LNCS, vol. 5170, pp. 28–32. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_6

  29. Staroletov, S.: Towards modeling and verification of eurobalise telegram encoding algorithm. Transp. Res. Procedia 61, 447–454 (2022)

    Google Scholar 

  30. Ushakova, M.S., Legalov, A.I.: Verification of programs with mutual recursion in Pifagor language. Autom. Control Comput. Sci. 52(7), 850–866 (2018)

    Article  Google Scholar 

  31. Zyubin, V., Anureev, I., Garanina, N., Staroletov, S., Rozov, A., Liakh, T.: Event-driven temporal logic pattern for control software requirements specification. In: Hojjat, H., Massink, M. (eds.) FSEN 2021, LNCS, vol 12818, pp. 92–107. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89247-0_7

Download references

Acknowledgements

On behalf of Steering Committee and all participant we would like to thanks. \(\bullet \) Innopolis University for providing classes for ruSTEP offline meetings as well as for communication infrastructure that makes online meetings possible. \(\bullet \) A.P. Ershov Institute of Informatics Systems for hosting of PDF-archive of the seminar and use of Institute’ YouTube-channel for video-archive (on special channel https://clck.ru/33VMc5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shilov, N.V., Kondratyev, D.A., Kudasov, N., Anureev, I.S. (2023). Running Regular Research Seminar Online. In: Jezic, G., Chen-Burger, J., Kusek, M., Sperka, R., Howlett, R.J., Jain, L.C. (eds) Agents and Multi-agent Systems: Technologies and Applications 2023. KES-AMSTA 2023. Smart Innovation, Systems and Technologies, vol 354. Springer, Singapore. https://doi.org/10.1007/978-981-99-3068-5_35

Download citation

Publish with us

Policies and ethics