Skip to main content

Nano-Bio-Analytical Systems for the Detection of Emerging Infectious Diseases

  • Chapter
  • First Online:
Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices

Abstract

The global damage caused by the spreading microbial infection is evident from the devastating COVID-19 pandemic. The infectious diseases caused by emerging viral and resistant bacterial pathogens have been a worldwide medical threat and economic burden. To combat this threat, a technology able to rapidly identify pathogen infection and determine the pathogen resistance profile is needed. The current methods for emerging infectious disease detection are mainly molecular methods based on polymerase chain reaction (PCR) for the detection of the specific pathogenic gene or resistant gene mutations. While sensitive, it requires prior knowledge of the pathogenic cells, which fail to output a negative result when a new pathogen or new resistant strain occurs and wrongly output a positive result when resistance genes are simply present but are not expressed or are not contributing to resistant phenotypes. Considering the life-threatening condition of an emerging infectious disease and the increasing prevalence of emerging pathogens and bacteria with antibiotic resistance in hospitals, automated and fast diagnostic facilities are required. This chapter summarizes the emerging nano-bio-analytical systems for the rapid detection of pathogen infectious diseases and antibiotic susceptibility testing for antibiotic resistance determination that will empower humans to win the epic war between human wits and microbial genes. In viral infection detection, we discussed nano-bio-analytical systems for the detection of viral infectious diseases including point-of-care immunoassay systems, electrochemical detection systems, and plasmonic-based systems. In resistant bacterial infection detection, we reviewed the emerging optical imaging systems for rapid phenotypic antibiotic resistance determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegoke O, Morita M, Kato T, Ito M, Suzuki T, Park EY (2017) Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays. Biosens Bioelectron 94:513–522

    Article  CAS  PubMed  Google Scholar 

  • Athamanolap P, Hsieh K, Chen LB, Yang S, Wang TH (2017) Integrated bacterial identification and antimicrobial susceptibility testing using PCR and high-resolution melt. Anal Chem 89(21):11529–11536

    Article  CAS  PubMed  Google Scholar 

  • Austin Suthanthiraraj PP, Sen AK (2019) Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen. Biosens Bioelectron 132:38–46

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Wang R, Hargis B, Lu H, Li Y (2012) A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12(9):12506–12518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltekin O, Boucharin A, Tano E, Andersson DI, Elf J (2017) Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc Natl Acad Sci U S A 114(34):9170–9175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Article  CAS  PubMed  Google Scholar 

  • Bauer KA, Perez KK, Forrest GN, Goff DA (2014) Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis 59(Suppl 3):S134–S145

    Article  CAS  PubMed  Google Scholar 

  • Besant JD, Sargent EH, Kelley SO (2015) Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria. Lab Chip 15(13):2799–2807

    Article  CAS  PubMed  Google Scholar 

  • Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland L, Streel C, De Wolf H, Rodriguez H, Verroken A (2019) Rapid antimicrobial susceptibility testing on positive blood cultures through an innovative light scattering technology: performances and turnaround time evaluation. BMC Infect Dis 19(1):989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Broek D, Keularts IM, Wielders JP, Kraaijenhagen RJ (2008) Benefits of the iQ200 automated urine microscopy analyser in routine urinalysis. Clin Chem Lab Med 46(11):1635–1640

    PubMed  Google Scholar 

  • Broeren MA, Bahceci S, Vader HL, Arents NL (2011) Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J Clin Microbiol 49(3):1025–1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnham C-AD, Frobel RA, Herrera ML, Wickes BL (2014) Rapid ertapenem susceptibility testing and klebsiella pneumoniae carbapenemase phenotype detection in klebsiella pneumoniae isolates by use of automated microscopy of immobilized live bacterial cells. J Clin Microbiol 52(3):982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes SA, Huynh T, Chang TC, Anderson CE, McDermott JJ, Oncina CI, Weigl BH, Nichols KP (2020) Wash-free, digital immunoassay in polydisperse droplets. Anal Chem 92(5):3535–3543

    Article  CAS  PubMed  Google Scholar 

  • Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, Sasso JM, Gregg AC, Soares DJ, Beskid TR, Jervey SR, Liu C (2020) Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci 6(5):591–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CDC (2019) Antibiotic resistance threats in the United States. U.S. Department of Health and Human Services, Centres for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  • Cecchetto J, Fernandes FCB, Lopes R, Bueno PR (2017) The capacitive sensing of NS1 flavivirus biomarker. Biosens Bioelectron 87:949–956

    Article  CAS  PubMed  Google Scholar 

  • Cermak N, Olcum S, Delgado FF, Wasserman SC, Payer KR, Murakami MA, Knudsen SM, Kimmerling RJ, Stevens MM, Kikuchi Y, Sandikci A, Ogawa M, Agache V, Baléras F, Weinstock DM, Manalis SR (2016) High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat Biotechnol 34(10):1052–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CY, Shi JY, Fan YD, Yang M (2017) A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sensors Actuators B Chem 251:927–933

    Article  CAS  Google Scholar 

  • Chang YF, Wang WH, Hong YW, Yuan RY, Chen KH, Huang YW, Lu PL, Chen YH, Chen YMA, Su LC, Wang SF (2018) Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Anal Chem 90(3):1861–1869

    Article  CAS  PubMed  Google Scholar 

  • Chantell C (2015) Multiplexed automated digital microscopy for rapid identification and antimicrobial susceptibility testing of bacteria and yeast directly from clinical samples. Clin Microbiol Newsl 37(20):161–167

    Article  Google Scholar 

  • Chen CH, Lu Y, Sin MLY, Mach KE, Zhang DD, Gau V, Liao JC, Wong PK (2010) Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal Chem 82(3):1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhang Z, Zhai X, Li Y, Lin L, Zhao H, Bian L, Li P, Yu L, Wu Y, Lin G (2020) Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem 92(10):7226–7231

    Article  CAS  PubMed  Google Scholar 

  • Chiang YL, Lin CH, Yen MY, Su YD, Chen SJ, Chen HF (2009) Innovative antimicrobial susceptibility testing method using surface plasmon resonance. Biosens Bioelectron 24(7):1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Jung YG, Kim J, Kim S, Jung Y, Na H, Kwon S (2013) Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 13(2):280–287

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Yoo J, Lee M, Kim EG, Lee JS, Lee S, Joo S, Song SH, Kim EC, Lee JC, Kim HC, Jung YG, Kwon S (2014a) A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med 6(267):267ra174

    Article  PubMed  Google Scholar 

  • Choi J, Yoo J, Lee M, Kim EG, Lee JS, Lee S, Joo S, Song SH, Kim EC, Lee JC, Kim HC, Jung YG, Kwon S (2014b) A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med 6:2670

    Article  Google Scholar 

  • David F, Hebeisen M, Schade G, Franco-Lara E, Di Berardino M (2012) Viability and membrane potential analysis of Bacillus megaterium cells by impedance flow cytometry. Biotechnol Bioeng 109(2):483–492

    Article  CAS  PubMed  Google Scholar 

  • Ehren K, Meißner A, Jazmati N, Wille J, Jung N, Vehreschild JJ, Hellmich M, Seifert H (2019) Clinical impact of rapid species identification from positive blood cultures with same-day phenotypic antimicrobial susceptibility testing on the management and outcome of bloodstream infections. Clin Infect Dis 70(7):1285–1293

    Google Scholar 

  • Eshetu A, Hauser A, Schmidt D, Bartmeyer B, Bremer V, Obermeier M, Ehret R, Volkwein A, Bock C-T, Bannert N (2020) Comparison of two immunoassays for concurrent detection of HCV antigen and antibodies among HIV/HCV co-infected patients in dried serum/plasma spots. J Virol Methods 279:113839

    Article  CAS  PubMed  Google Scholar 

  • Excler JL, Saville M, Berkley S, Kim JH (2021) Vaccine development for emerging infectious diseases. Nat Med 27(4):591–600

    Article  CAS  PubMed  Google Scholar 

  • Farzin L, Shamsipur M, Samandari L, Sheibani S (2020) HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta 206

    Google Scholar 

  • Fluit AC, Visser MR, Schmitz FJ (2001) Molecular detection of antimicrobial resistance. Clin Microbiol Rev 14(4):836–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouchet P, Jayat C, Hechard Y, Ratinaud MH, Frelat G (1993) Recent advances of flow cytometry in fundamental and applied microbiology. Biol Cell 78(1-2):95–109

    Article  CAS  PubMed  Google Scholar 

  • Fredborg M, Andersen KR, Jorgensen E, Droce A, Olesen T, Jensen BB, Rosenvinge FS, Sondergaard TE (2013) Real-time optical antimicrobial susceptibility testing. J Clin Microbiol 51(7):2047–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredborg M, Rosenvinge FS, Spillum E, Kroghsbo S, Wang M, Sondergaard TE (2015) Rapid antimicrobial susceptibility testing of clinical isolates by digital time-lapse microscopy. Eur J Clin Microbiol Infect Dis 34(12):2385–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye JG, Lindsey RL, Rondeau G, Porwollik S, Long F, McClelland M, Jackson CR, Englen MD, Meinersmann RJ, Berrang ME, Davis JA, Barrett JB, Turpin JB, Thitaram SN, Fedorka-Cray PJ (2010) Development of a DNA microarray to detect antimicrobial resistance genes identified in the National Center for Biotechnology Information database. Microb Drug Resist 16(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271

    Article  CAS  PubMed  Google Scholar 

  • Hayden RT, Clinton LK, Hewitt C, Koyamatsu T, Sun Y, Jamison G, Perkins R, Tang L, Pounds S, Bankowski MJ (2016) Rapid antimicrobial susceptibility testing using forward laser light scatter technology. J Clin Microbiol 54(11):2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo NS, Oh SY, Ryu MY, Baek SH, Park TJ, Choi C, Huh YS, Park JP (2019) Affinity peptide-guided plasmonic biosensor for detection of noroviral protein and human norovirus. Biotechnol Bioprocess Eng 24(2):318–325

    Article  CAS  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  PubMed  Google Scholar 

  • Huang JL, Xie ZX, Xie ZQ, Luo SS, Xie LJ, Huang L, Fan Q, Zhang YF, Wang S, Zeng TT (2016) Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal Chim Acta 913:121–127

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chen J, Yu Z, Tang D (2020) Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay. Anal Chem 92(3):2809–2814

    Article  CAS  PubMed  Google Scholar 

  • Huang LP, Ding LF, Zhou J, Chen SL, Chen F, Zhao C, Xu JQ, Hu WJ, Ji JS, Xu H, Liu GL (2021) One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosens Bioelectron 171

    Google Scholar 

  • Hushegyi A, Pihikova D, Bertok T, Adam V, Kizek R, Tkac J (2016) Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron 79:644–649

    Article  CAS  PubMed  Google Scholar 

  • Iswardy E, Tsai TC, Cheng IF, Ho TC, Perng GC, Chang HC (2017) A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection. Biosens Bioelectron 95:174–180

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49(11):1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Kaushik AM, Hsieh KW, Chen LB, Shin DJ, Liao JC, Wang TH (2017) Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens Bioelectron 97:260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan ZA, Siddiqui MF, Park S (2019) Current and emerging methods of antibiotic susceptibility testing. Diagnostics 9(2)

    Google Scholar 

  • Kim SC, Cestellos-Blanco S, Inoue K, Zare RN (2015) Miniaturized antimicrobial susceptibility test by combining concentration gradient generation and rapid cell culturing. Antibiotics-Basel 4(4):455–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Koo B, Hong KH, Jin CE, Kim JY, Kim SH, Shin Y (2018) Arch-shaped multiple-target sensing for rapid diagnosis and identification of emerging infectious pathogens. Biosens Bioelectron 119:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka PM, Pini V, Calleja M, Tamayo J (2017) Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection. PLoS One 12(2):e0171899

    Article  PubMed  PubMed Central  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13(12):1057–1098

    Article  PubMed  Google Scholar 

  • Lei KF (2014) Review on impedance detection of cellular responses in micro/nano environment. Micromachines 5(1):1–12

    Article  Google Scholar 

  • Li H, Torab P, Mach KE, Surrette C, England MR, Craft DW, Thomas NJ, Liao JC, Puleo C, Wong PK (2019b) Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing. Proc Natl Acad Sci U S A 116(21):10270–10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HY, Tseng SH, Cheng TM, Chu HL, Lu YN, Wang FY, Tsai LY, Shieh JY, Yang JY, Juan CC, Tu LC, Chang CC (2013) Rapid and highly sensitive detection of enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy. Nanotechnology 24(28)

    Google Scholar 

  • Li X, Qin Z, Fu H, Li T, Peng R, Li Z, Rini JM, Liu X (2021) Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: an experimental approach. Biosens Bioelectron 177:112672

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Leustean L, Inci F, Zheng M, Demirci U, Wang SQ (2019a) Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv 37(8)

    Google Scholar 

  • Lissandrello C, Inci F, Francom M, Paul MR, Demirci U, Ekinci KL (2014) Nanomechanical motion of Escherichia coli adhered to a surface. Appl Phys Lett 105(11)

    Google Scholar 

  • Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8(7):522–526

    Article  CAS  PubMed  Google Scholar 

  • Lu PH, Ma YD, Fu CY, Lee GB (2020) A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces. Lab Chip 20(4):789–797

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Gao J, Zhang DD, Gau V, Liao JC, Wong PK (2013) Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Anal Chem 85(8):3971–3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu FJ, Pan M, Patil S, Wang JH, Matin AC, Andrews JR, Tang SKY (2018) Phenotyping antibiotic resistance with single-cell resolution for the detection of heteroresistance. Sensors Actuators B Chem 270:396–404

    Article  CAS  Google Scholar 

  • Machowski EE, Kana BD (2017) Genetic mimetics of Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus as verification standards for molecular diagnostics. J Clin Microbiol 55(12):3384–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannoor MS, Zhang SY, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107(45):19207–19212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S (2017) Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by gram-negative pathogens. J Clin Microbiol 55(7):2116–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger S, Frobel RA, Dunne WM (2014) Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy. Diagn Microbiol Infect Dis 79(2):160–165

    Article  PubMed  Google Scholar 

  • Mo M, Yang Y, Zhang F, Jing W, Iriya R, Popovich J, Wang S, Grys T, Haydel SE, Tao N (2019) Rapid antimicrobial susceptibility testing of patient urine samples using large volume free-solution light scattering microscopy. Anal Chem 91(15):10164–10171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan R, Sanpitakseree C, Desai AV, Sevgen SE, Schroeder CM, Kenis PJA (2015) A microfluidic approach to study the effect of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Adv 5(44):35211–35223

    Article  CAS  Google Scholar 

  • Morens DM, Daszak P, Taubenberger JK (2020) Escaping Pandora’s box - another novel coronavirus. N Engl J Med 382(14):1293–1295

    Article  CAS  PubMed  Google Scholar 

  • Morens DM, Fauci AS (2012) Emerging infectious diseases in 2012: 20 years after the institute of medicine report. MBio 3(6):1–4

    Article  Google Scholar 

  • Morens DM, Fauci AS (2020) Emerging pandemic diseases: how we got to COVID-19. Cell 183(3):837–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430(6996):242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morens DM, Folkers GK, Fauci AS (2008) Emerging infections: a perpetual challenge. Lancet Infect Dis 8(11):710–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Mujawar MA, Gohel H, Bhardwaj SK, Srinivasan S, Hickman N, Kaushik A (2020) Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management. Mater Today Chem 17:1–9

    Google Scholar 

  • Navakul K, Warakulwit C, Yenchitsomanus PT, Panya A, Lieberzeit PA, Sangma C (2017) A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomedicine 13(2):549–557

    Article  CAS  PubMed  Google Scholar 

  • Ng SY, Reboud J, Wang KYP, Tang KC, Zhang L, Wong P, Moe KT, Shim W, Chen Y (2010) Label-free impedance detection of low levels of circulating endothelial progenitor cells for point-of-care diagnosis. Biosens Bioelectron 25(5):1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Nwankire CE, Venkatanarayanan A, Glennon T, Keyes TE, Forster RJ, Ducree J (2015) Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron 68:382–389

    Article  CAS  PubMed  Google Scholar 

  • Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA (2020) Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor. Sci Rep 10(1):2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orooji Y, Sohrabi H, Hemmat N, Oroojalian F, Baradaran B, Mokhtarzadeh A, Mohaghegh M, Karimi-Maleh H (2020) An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano Lett 13(1):18

    Article  Google Scholar 

  • Ozer T, Geiss BJ, Henry CS (2019) Review—Chemical and biological sensors for viral detection. J Electrochem Soc 167(3):037523

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozkaya GU, Durak MZ, Akyar I, Karatuna O (2019) Antimicrobial susceptibility test for the determination of resistant and susceptible S. aureus and Enterococcus spp. using a multi-channel surface plasmon resonance device. Diagnostics 9(4)

    Google Scholar 

  • Padoan A, Cosma C, Sciacovelli L, Faggian D, Plebani M (2020) Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin Chem Lab Med 58(7):1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Pancholi P, Carroll KC, Buchan BW, Chan RC, Dhiman N, Ford B, Granato PA, Harrington AT, Hernandez DR, Humphries RM, Jindra MR, Ledeboer NA, Miller SA, Mochon AB, Morgan MA, Patel R, Schreckenberger PC, Stamper PD, Simner PJ, Tucci NE, Zimmerman C, Wolk DM (2018) Multicenter evaluation of the accelerate PhenoTest BC Kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J Clin Microbiol 56(4):e01329–e01317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantel A, Monier J, Lavigne J-P (2018) Performance of the Accelerate Pheno™ system for identification and antimicrobial susceptibility testing of a panel of multidrug-resistant gram-negative bacilli directly from positive blood cultures. J Antimicrob Chemother 73(6):1546–1552

    Article  CAS  PubMed  Google Scholar 

  • Park S, Zhang Y, Lin S, Wang TH, Yang S (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29(6):830–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park TJ, Hyun MS, Lee HJ, Lee SY, Ko S (2009) A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta 79(2):295–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel J, Sharma P (2020) Design of a novel rapid immunoassay for simultaneous detection of hepatitis C virus core antigen and antibodies. Arch Virol 165(3):627–641

    Article  CAS  PubMed  Google Scholar 

  • Qiu GY, Gai ZB, Saleh L, Tang JK, Gui T, Kullak-Ublick GA, Wang J (2021) Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. ACS Nano 15(4):7536–7546

    Article  CAS  PubMed  Google Scholar 

  • Qiu GY, Gai ZB, Tao YL, Schmitt J, Kullak-Ublick GA, Wang J (2020) Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14(5):5268–5277

    Article  CAS  PubMed  Google Scholar 

  • Qiu GY, Ng SP, Wu CML (2018) Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing. Sensors Actuators B Chem 265:459–467

    Article  CAS  Google Scholar 

  • Qiu GY, Thakur A, Xu C, Ng SP, Lee Y, Wu CML (2019) Detection of glioma-derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor. Adv Funct Mater:29 (9)

    Google Scholar 

  • Quach DT, Sakoulas G, Nizet V, Pogliano J, Pogliano K (2016) Bacterial Cytological Profiling (BCP) as a rapid and accurate antimicrobial susceptibility testing method for staphylococcus aureus. Ebiomedicine 4:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AL, Joneja U, Villatoro T, Andris E, Boyle JA, Bondi J (2017) Evaluation of the BacterioScan 216Dx for standalone preculture screen of preserved urine specimens in a clinical setting. Lab Med 49(1):35–40

    Article  PubMed  Google Scholar 

  • Sabhachandani P, Sarkar S, Zucchi PC, Whitfield BA, Kirby JE, Hirsch EB, Konry T (2017) Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging. Microchim Acta 184(12):4619–4628

    Article  CAS  Google Scholar 

  • Satcher D (1995) Emerging infections - getting ahead of the curve. Emerg Infect Dis 1(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JG, Wood JB, Schmitt BH, Emery CL, Davis TE, Smith NW, Blevins S, Hiles J, Desai A, Wrin J, Bocian B, Manaloor JJ (2019) Susceptibility Provision Enhances Effective De-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact. J Antimicrob Chemother 74(Supplement_1):i16–i23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoepp NG, Schlappi TS, Curtis MS, Butkovich SS, Miller S, Humphries RM, Ismagilov RF (2017) Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci Transl Med 9(410):eaal3693

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevenler D, Bardon A, Fernandez Suarez M, Marshall L, Toner M, Drain PK, Sandlin RD (2020) Immunoassay for HIV drug metabolites tenofovir and tenofovir diphosphate. ACS Infect Dis 6(7):1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafiee H, Jahangir M, Inci F, Wang SQ, Willenbrecht RBM, Giguel FF, Tsibris AMN, Kuritzkes DR, Demirci U (2013) Acute on-chip HIV detection through label-free electrical sensing of viral nano-lysate. Small 9(15):2553–2563

    Article  CAS  PubMed  Google Scholar 

  • Shamsipur M, Gholivand MB, Ehzari H, Pashabadi A, Arkan E, Mansouri K (2018) Single frequency impedance strategy employed in rapid detection of leukemia cancer cells using an electrospun PES-nanofiber reinforced ternary composite-based cytosensor. Electrochim Acta 283:1498–1506

    Article  CAS  Google Scholar 

  • Shan XN, Fang YM, Wang SP, Guan Y, Chen HY, Tao NJ (2014) Detection of charges and molecules with self-assembled nano-oscillators. Nano Lett 14(7):4151–4157

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Kumar JS, Singh VV, Biswas U, Sarkar SS, Alam SI, Dash PK, Boopathi M, Ganesan K, Jain R (2020) Surface plasmon resonance sensing of Ebola virus: a biological threat. Anal Bioanal Chem 412(17):4101–4112

    Article  CAS  PubMed  Google Scholar 

  • Sin MLY, Mach KE, Wong PK, Liao JC (2014) Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 14(2):225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon SL, Oliver KB (2014) Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician 89(12):938–941

    PubMed  Google Scholar 

  • Stalter RM, Baeten JM, Donnell D, Spinelli MA, Glidden DV, Rodrigues WC, Wang G, Vincent M, Mugo N, Mujugira A, Marzinke M, Hendrix C, Gandhi M, Team, f. t. P. P. S (2020) urine tenofovir levels measured using a novel immunoassay predict human immunodeficiency virus protection. Clin Infect Dis 72(3):486–489

    Article  PubMed Central  Google Scholar 

  • Steen HB (1990) Light scattering measurement in an arc lamp-based flow cytometer. Cytometry 11(2):223–230

    Article  CAS  PubMed  Google Scholar 

  • Su LC, Chang CM, Tseng YL, Chang YF, Li YC, Chang YS, Chou CE (2012) Rapid and highly sensitive method for influenza A (H1N1) virus detection. Anal Chem 84(9):3914–3920

    Article  CAS  PubMed  Google Scholar 

  • Sutton S (2011) Measurement of microbial cells by optical density. J Valid Technol 2011:46

    Google Scholar 

  • Syal K, Iriya R, Yang Y, Yu H, Wang S, Haydel SE, Chen HY, Tao N (2016) Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale. ACS Nano 10(1):845–852

    Article  CAS  PubMed  Google Scholar 

  • Syal K, Wang W, Shan XN, Wang SP, Chen HY, Tao NJ (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Group, W. H. O. P. P. L. W (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327

    Article  PubMed  Google Scholar 

  • Takemura K, Adegoke O, Suzuki T, Park EY (2019) A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus. PLoS One 14(1)

    Google Scholar 

  • Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol:94 (7)

    Google Scholar 

  • Wang C, Liu M, Wang ZF, Li S, Deng Y, He NY (2021) Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today 37

    Google Scholar 

  • Wang S, Shan X, Patel U, Huang X, Lu J, Li J, Tao N (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci U S A 107(37):16028–16032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ME (1999) Emerging infections and disease emergence. Emerg Infect Dis 5(2):308–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Wang RH, Li YB (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 162:511–522

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Bashir R (2008) Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv 26(2):135–150

    Article  CAS  PubMed  Google Scholar 

  • Yang YZ, Yu H, Shan XN, Wang W, Liu XW, Wang SP, Tao NJ (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11(24):2878–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Xia YQ, Tang Y, Zhang WL, Yeh YT, Lu HG, Zheng SY (2017) A nanostructured microfluidic immunoassay platform for highly sensitive infectious pathogen detection. Small 13(24)

    Google Scholar 

  • Zhang F, Jiang J, McBride M, Yang Y, Mo M, Iriya R, Peterman J, Jing W, Grys T, Haydel SE, Tao N, Wang S (2020) Direct antimicrobial susceptibility testing on clinical urine samples by optical tracking of single cell division events. Small 16(52):e2004148

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Jiang J, McBride M, Zhou X, Yang Y, Mo M, Peterman J, Grys T, Haydel SE, Tao N, Wang S (2021b) Rapid antimicrobial susceptibility testing on clinical urine samples by video-based object scattering intensity detection. Anal Chem 93(18):7011–7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang S, Yang Y, Jiang J, Tao N (2021a) Imaging single bacterial cells with electro-optical impedance microscopy. ACS Sens 6(2):348–354

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, Chen H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R, Wang X, Zheng X-S, Zhao K, Chen Q-J, Deng F, Liu L-L, Yan B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program (Grant No. 2018YFC1707701), the National Natural Science Foundation of China (Grant No. 31671007, 81971703, 81801793, 82102180), the China Postdoctoral Science Foundation (Grant No. 2018M630677, 2019T120518), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ18C100001), the Fundamental Research Funds for the Central Universities (Grant No. 2021QNA5018, 2021FZZX002-05), and the Collaborative Innovation Center of Traditional Chinese Medicine Health Management of Fujian province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenni Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, D. et al. (2023). Nano-Bio-Analytical Systems for the Detection of Emerging Infectious Diseases. In: Purohit, B., Chandra, P. (eds) Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-99-3025-8_7

Download citation

Publish with us

Policies and ethics