Skip to main content

Abstract

Food safety is a worldwide problem and ensuring food safety requires strict monitoring of toxins, antibiotics, and bacteria. Thus, sensitive methods of analysis to determine the types and residues of harmful components in food are needed. Point-of-care sensors have been abundantly developed over the last two decades and are proven to be innovative to analyze the contaminants present in food samples both quantitatively and qualitatively. In this book chapter, an overview of aptamer-based optical methods for monitoring food safety is provided. This chapter will focus on optical biosensing techniques such as UV-visible spectroscopy, fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and photonic crystals. The principle, mechanism, advantages, and limitations of each technique are described with an ample number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akgönüllü S, Yavuz H, Denizli A (2020) SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 219:121219

    Article  PubMed  Google Scholar 

  • Akhtar MH, Hussain KK, Gurudatt NG, Chandra P, Shim Y-B (2018) Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens Bioelectron 116:108

    Article  CAS  PubMed  Google Scholar 

  • Akki SU, Werth CJ (2018) Critical review: DNA Aptasensors, are they ready for monitoring organic pollutants in natural and treated water sources? Environ Sci Technol 52:8989–9007

    Article  CAS  PubMed  Google Scholar 

  • Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063–2083

    Article  CAS  Google Scholar 

  • Arroyo-Currás N, Dauphin-Ducharme P, Scida K, Chávez JL (2020) From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal Methods 12:1288–1310

    Article  Google Scholar 

  • Asghari A, Wang C, Yoo KM et al (2021) Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: opportunities and challenges. Appl Phys Rev 8:031313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barhoumi A, Zhang D, Halas NJ (2008a) Correlation of molecular orientation and packing density in a dsDNA self-assembled monolayer observable with surface-enhanced Raman spectroscopy. J Am Chem Soc 130:17

    Article  Google Scholar 

  • Barhoumi A, Zhang D, Tam F, Halas NJ (2008b) Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 130:5523–5529

    Article  CAS  PubMed  Google Scholar 

  • Bayraç C, Eyidoğan F, Avni Öktem H (2017) DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis. Biosens Bioelectron 98:22–28

    Article  PubMed  Google Scholar 

  • Bayramoglu G, Kilic M, Yakup Arica M (2022) Selective isolation and sensitive detection of lysozyme using aptamer based magnetic adsorbent and a new quartz crystal microbalance system. Food Chem 382:132353

    Article  CAS  PubMed  Google Scholar 

  • Birader K, Kumar P, Tammineni Y et al (2021) Colorimetric aptasensor for on-site detection of oxytetracycline antibiotic in milk. Food Chem 356:129659

    Article  CAS  PubMed  Google Scholar 

  • Caglayan MO (2020) Aptamer-based ellipsometric sensor for ultrasensitive determination of aminoglycoside group antibiotics from dairy products. J Sci Food Agric 100:3386–3393

    Article  CAS  PubMed  Google Scholar 

  • Chandra P, Das D, Abdelwahab AA (2010) Gold nanoparticles in molecular diagnostics and therapeutics. Dig J Nanomater Biostruc 5:363

    Google Scholar 

  • Chandra P, Prakash R (2020) Nanobiomaterial engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9840-8

    Book  Google Scholar 

  • Chen C, Wang J (2020) Optical biosensors: an exhaustive and comprehensive review. Analyst 145:1605–1628

    Article  CAS  PubMed  Google Scholar 

  • Chiappini A, Tran LTN, Trejo-García PM et al (2020) Photonic crystal stimuli-responsive chromatic sensors: a short review. Micromachines (Basel) 11:290

    Article  PubMed  Google Scholar 

  • Chinowsky TM, Soelberg SD, Baker P et al (2007) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22:2268–2275

    Article  CAS  PubMed  Google Scholar 

  • Choi CJ, Cunningham BT (2007) A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. Lab Chip 7:550–556

    Article  CAS  PubMed  Google Scholar 

  • Choi JR, Yong KW, Choi JY, Cowie AC (2019) Emerging point-of-care technologies for food safety analysis. Sensors (Basel) 19:817

    Article  PubMed  Google Scholar 

  • Colvin VL (2001) From opals to optics: colloidal photonic crystals. MRS Bull 26:637–641

    Article  CAS  Google Scholar 

  • Dang X, Zhang X, Zhao H (2019) Signal amplified photoelectrochemical sensing platform with g-C3N4/inverse opal photonic crystal WO3 heterojunction electrode. J Electroanal Chem 840:101–108

    Article  CAS  Google Scholar 

  • Deneva V, Bakardzhiyski I, Bambalov K (2019) Using Raman spectroscopy as a fast tool to classify and analyze Bulgarian winesa feasibility study. Molecules 25:170. https://doi.org/10.3390/molecules25010170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhiman A, Kalra P, Bansal V et al (2017) Aptamer-based point-of-care diagnostic platforms. Sens Actuators B Chem 246:535–553

    Article  CAS  Google Scholar 

  • Diao YY, Liu XY, Toh GW et al (2013) Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv Funct Mater 23:5373–5380

    Article  CAS  Google Scholar 

  • Ding S-Y, You E-M, Tian Z-Q, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46:4042

    Article  CAS  PubMed  Google Scholar 

  • Écija-Arenas Á, Kirchner EM, Hirsch T, Fernández-Romero JM (2021) Development of an aptamer-based SPR-biosensor for the determination of kanamycin residues in foods. Anal Chim Acta 1169:338631

    Article  PubMed  Google Scholar 

  • Edrington AC, Urbas AM, DeRege P et al (2001) Polymer-based photonic crystals. Adv Mater 13:421–425

    Article  CAS  Google Scholar 

  • Fang Q, Li Y, Miao X et al (2019) Sensitive detection of antibiotics using aptamer conformation cooperated enzyme-assisted SERS technology. Analyst 144:3649–3658

    Article  CAS  PubMed  Google Scholar 

  • Fathi F, Rashidi MR, Pakchin PS et al (2021) Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 221:121615

    Article  CAS  PubMed  Google Scholar 

  • Fenzl C, Wilhelm S, Hirsch T, Wolfbeis OS (2013) Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl Mater Interfaces 5:173–178

    Article  CAS  PubMed  Google Scholar 

  • Freeman D, Grillet C, Lee MW et al (2008) Chalcogenide glass photonic crystals. Photonics Nanostruct 6:3–11

    Article  Google Scholar 

  • González-Urbina L, Baert K, Kolaric B et al (2011) Linear and nonlinear optical properties of colloidal photonic crystals. Chem Rev 112:2268–2285

    Article  PubMed  Google Scholar 

  • Groff K, Brown J, Clippinger AJ (2015) Modern affinity reagents: recombinant antibodies and aptamers. Biotechnol Adv 33:1787–1798

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Wen F, Qiao Q et al (2019) A novel graphene oxide-based aptasensor for amplified fluorescent detection of aflatoxin M1 in milk powder. Sensors 19:1–9

    Article  Google Scholar 

  • Ha NR, Jung IP, La IJ, Jung HS, Yoon MY (2017) Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci Rep 7(1):40305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han MG, Shin CG, Jeon SJ et al (2012) Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band. Adv Mater 24:6438–6444

    Article  CAS  PubMed  Google Scholar 

  • Hanif S, Liu H, Chen M et al (2017) Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. Anal Chem 89:2522–2530

    Article  CAS  PubMed  Google Scholar 

  • Jamois C, Wehrspohn RB, Andreani LC et al (2003) Silicon-based two-dimensional photonic crystal waveguides. Photonics Nanostruct 1:1–13

    Article  Google Scholar 

  • Jiang Y, Sun DW, Pu H, Wei Q (2019) Ultrasensitive analysis of kanamycin residue in milk by SERS-based Aptasensor. Talanta 197:151–158

    Article  CAS  PubMed  Google Scholar 

  • Kalyani N, Chatterjee B, Sharma TK (2021a) Aptamer mediated sensing of environmental pollutants utilizing peroxidase mimic activity of nanozymes. In: Nanozymes for environmental engineering. Environmental chemistry for a sustainable world. Springer, Cham, pp 111–143

    Chapter  Google Scholar 

  • Kalyani N, Goel S, Jaiswal S (2020) Point-of-care sensors for on-site detection of pesticides. In: Tuteja SK, Arora D, Dilbaghi N, Lichtfouse E (eds) Nanosensors for environmental applications. Springer Nature, Cham, pp 197–224

    Chapter  Google Scholar 

  • Kalyani N, Goel S, Jaiswal S (2021b) On-site sensing of pesticides using point-of-care biosensors: a review. Environ Chem Lett 19:345–354

    Article  CAS  Google Scholar 

  • Kaur B, Kumar S, Kaushik BK (2022) Recent advancements in optical biosensors for cancer detection. Biosens Bioelectron 197:113805

    Article  CAS  PubMed  Google Scholar 

  • Kim NH, Lee J, Moskovits M (2010a) Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Lett 10:4181–4185

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Mitropoulos AN, Spitzberg JD et al (2012) Silk inverse opals. Nat Photonics 6:818–823

    Article  CAS  Google Scholar 

  • Kim TY, Lim JW, Lim MC et al (2020) Aptamer-based fluorescent assay for simple and sensitive detection of fipronil in liquid eggs. Biotechnol Bioprocess Eng 25:246–254

    Article  CAS  Google Scholar 

  • Kim YS, Kim JH, Kim IA et al (2010b) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26:1644–1649

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Yoshioka S, Kawagoe K (2002) Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc R Soc B Biol Sci 269:1417

    Article  Google Scholar 

  • Kiruba Daniel SCG, Kumar A, Sivasakthi K, Thakur CS (2019) Handheld, low-cost electronic device for rapid, real-time fluorescence-based detection of Hg2+, using aptamer-templated ZnO quantum dots. Sens Actuators B Chem 290:73–78

    Article  CAS  Google Scholar 

  • Kouba J, Kubenz M, Mai A et al (2006) Fabrication of nanoimprint stamps for photonic crystals. J Phys Conf Ser 34:149

    Google Scholar 

  • Kumar S, Gopinathan R, Chandra GK et al (2020) Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy. Anal Bioanal Chem 412:2505–2516

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Carney RP, Hazari S et al (2015) 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale 7:9290–9297

    Article  CAS  PubMed  Google Scholar 

  • Li C, Qin Y, Li D et al (2018a) A highly sensitive enzyme catalytic SERS quantitative analysis method for ethanol with Victoria blue B molecular probe in the stable nanosilver sol substrate. Sens Actuators B Chem 255:3464–3471

    Article  CAS  Google Scholar 

  • Li C, Wang X, Liang A et al (2018b) A simple gold nanoplasmonic SERS method for trace Hg2+ based on aptamer-regulating graphene oxide catalysis. Luminescence 33:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liang B, Li W et al (2021) A capillary device made by aptamer-functionalized silica photonic crystal microspheres for the point-of-care detection of Ochratoxin A. Sens Actuators B Chem 330:129367

    Article  CAS  Google Scholar 

  • Li Q, Lu Z, Tan X et al (2017) Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens Bioelectron 97:59–64

    Article  CAS  PubMed  Google Scholar 

  • Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg 2+-modulated G-quadruplex-based dnazymes. Anal Chem 81:2144–2149

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Huang Y, Ma Y et al (2015) Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. ACS Appl Mater Interfaces 7:6982. https://doi.org/10.1021/acsami.5b01120

    Article  CAS  PubMed  Google Scholar 

  • López C (2003) Materials aspects of photonic crystals. Adv Mater 15:1679–1704

    Article  Google Scholar 

  • Lu Z, Chen X, Wang Y, Zheng X, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578

    Article  CAS  Google Scholar 

  • Lu Y, Zhong J, Yao G, Huang Q (2018) A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles. Sens Actuators B Chem 258:365–372

    Article  CAS  Google Scholar 

  • Lu Z, Chen X, Wang Y et al (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578

    Article  CAS  Google Scholar 

  • Lu Z, Zhang H, Huang J et al (2022) Gelatinase-responsive photonic crystal membrane for pathogenic bacteria detection and application in vitro health diagnosis. Biosens Bioelectron 202:114013

    Article  CAS  PubMed  Google Scholar 

  • Luan Y, Lu A, Chen J, Fu H, Xu L (2016) A label-free aptamer-based fluorescent assay for cadmium detection. Appl Sci 6(12):432

    Article  Google Scholar 

  • MacLeod J, Rosei F (2013) Photonic crystals: sustainable sensors from silk. Nat Mater 12:98–100

    Article  CAS  PubMed  Google Scholar 

  • Mahato K, Maurya PK, Chandra P (2018) Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics. 3 Biotech 8:1–14

    Article  Google Scholar 

  • Marlow F, Muldarisnur, Sharifi P et al (2009) Opals: status and prospects. Angew Chem Int Ed 48:6212–6233

    Article  CAS  Google Scholar 

  • McPhedran RC, Nicorovici NA, McKenzie DR et al (2003) Structural colours through photonic crystals. Phys B Condens Matter 338:182–185

    Article  CAS  Google Scholar 

  • Meseguer F (2005) Colloidal crystals as photonic crystals. Colloids Surf 270:1–7

    Article  Google Scholar 

  • Miao YB, Ren HX, Gan N et al (2016) A triple-amplification SPR electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling. Biosens Bioelectron 86:477–483

    Article  CAS  PubMed  Google Scholar 

  • Morales MA, Halpern JM (2018) Guide to selecting a biorecognition element for biosensors. Bioconjug Chem 29(10):3231–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz TJ, Polage CR, Taylor DS et al (2010) Evaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers. J Clin Microbiol 48:4287–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad M, Yao G, Zhong J et al (2020) A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO2@Au core/shell nanoparticles. Talanta 207:120324

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Teng Y, Li P et al (2018) Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering. Spectrochim Acta A Mol Biomol Spectrosc 191:271–276

    Article  CAS  PubMed  Google Scholar 

  • Nsibande SA, Forbes PBC (2016) Fluorescence detection of pesticides using quantum dot materials – a review. Anal Chim Acta 945:9–22

    Article  CAS  PubMed  Google Scholar 

  • Panda A, Puspa Devi P (2020) Photonic crystal biosensor for refractive index based cancerous cell detection. Opt Fiber Technol 54:102123

    Article  CAS  Google Scholar 

  • Park JH, Byun JY, Mun H et al (2014) A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens Bioelectron 59:321–327

    Article  CAS  PubMed  Google Scholar 

  • Pouya C, Stavenga DG, Vukusic P et al (2011) Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus. Opt Express 19:11355–11364

    Article  CAS  PubMed  Google Scholar 

  • Prabowo BA, Purwidyantri A, Liu KC (2018) Surface Plasmon resonance optical sensor: a review on light source technology. Biosensors (Basel) 8:80

    Article  CAS  PubMed  Google Scholar 

  • Qiao Q, Guo X, Wen F et al (2021) Aptamer-based fluorescence quenching approach for detection of aflatoxin M1 in milk. Front Chem 9:1–8

    Article  Google Scholar 

  • Rehmat Z, Mohammed WS, Sadiq MB et al (2019) Ochratoxin A detection in coffee by competitive inhibition assay using chitosan-based surface plasmon resonance compact system. Colloids Surf B: Biointerfaces 174:569–574

    Article  CAS  PubMed  Google Scholar 

  • Scatena E, Baiguera S, Del Gaudio C (2019) Raman spectroscopy and aptamers for a label-free approach: diagnostic and application tools. J Healthc Eng 2019:2815789

    Article  PubMed  PubMed Central  Google Scholar 

  • Seok Y, Byun JY, Shim WB, Kim MG (2015) A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta 886:182–187

    Article  CAS  PubMed  Google Scholar 

  • Setlem K, Mondal B, Shylaja R, Parida M (2020) Dual aptamer-DNAzyme based colorimetric assay for the detection of AFB1 from food and environmental samples. Anal Biochem 608:113874

    Article  CAS  PubMed  Google Scholar 

  • Shafiee H, Lidstone EA, Jahangir M et al (2014) Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci Rep 4:1–7

    Article  Google Scholar 

  • Shen H, Bai J, Zhao X et al (2022) Highly ordered, plasmonic enhanced inverse opal photonic crystal for ultrasensitive detection of staphylococcal enterotoxin B. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c18386

  • Shi X, Sun J, Yao Y et al (2020) Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. Sci Total Environ 705:135905

    Article  CAS  PubMed  Google Scholar 

  • Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Nat Rev Methods Primers 1:87

    Google Scholar 

  • Sudha P, Lavu R, Mondal B et al (2016) Selection and characterization of Aptamers using a modified whole cell bacterium SELEX for the detection of Salmonella enterica Serovar Typhimurium. ACS Comb Sci. https://doi.org/10.1021/acscombsci.5b00123

  • Sun D, Xu W, Xu S (2019a) Ultrasensitive Raman sensing of alkaline phosphatase activity in serum based on an enzyme-catalyzed reaction. Anal Methods 11:3501–3505

    Article  CAS  Google Scholar 

  • Sun L, Wu L, Zhao Q (2017) Aptamer based surface plasmon resonance sensor for aflatoxin B1. Microchim Acta 184:2605–2610

    Article  CAS  Google Scholar 

  • Sun Y, Li Z, Huang X et al (2019b) A nitrile-mediated aptasensor for optical anti-interference detection of acetamiprid in apple juice by surface-enhanced Raman scattering. Biosens Bioelectron 145:111672

    Article  CAS  PubMed  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang X, Wen G, Jiang Z (2019) A dual-model SERS and RRS analytical platform for Pb(II) based on Ag-doped carbon dot catalytic amplification and aptamer regulation. Sci Rep 9:1–10

    Google Scholar 

  • Wang Q, Zhao WM (2018) Optical methods of antibiotic residues detections: a comprehensive review. Sens Actuators B Chem 269:238–256

    Article  CAS  Google Scholar 

  • Wang S, Dong Y, Liang X (2018) Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens Bioelectron 109:1

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Nong J, Mei Y et al (2018) Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay. Sens Actuators B Chem 273:1548–1555

    Article  CAS  Google Scholar 

  • World Health Organization (2022) WHO global strategy for food safety 2022–2030

    Google Scholar 

  • Wu S, Wang Y, Duan N et al (2015) Colorimetric aptasensor based on enzyme for the detection of vibrio parahemolyticus. J Agric Food Chem 63:7849–7854

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Zhu Z, Li B et al (2018) A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor. Toxicon 146:24–30

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhan S, Wang L, Zhou P (2014) Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139:1550–1561

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Ma C, Zhao H, Chen M, Deng Z (2019) Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Food Chem 277:273–278

    Article  CAS  PubMed  Google Scholar 

  • Wu Z (2019) AuNP tetramer-based Aptasensor for SERS sensing of oxytetracycline. Food Anal Methods 12:1121–1127

    Article  Google Scholar 

  • Wu Z, Xu E, Chughtai MFJ et al (2017) Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chem 230:673–680

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li Y, Bie J et al (2015) Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 182:2131–2138

    Article  CAS  Google Scholar 

  • Xuan H, Ren J, Zhu Y et al (2016) Aptamer-functionalized P(NIPAM-AA) hydrogel fabricated one-dimensional photonic crystals (1DPCs) for colorimetric sensing. RSC Adv 6:36827–36833

    Article  CAS  Google Scholar 

  • Yan Q, Yu J, Cai Z, Zhao XS (2011) Colloidal photonic crystals: fabrication and applications. In: Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH, Weinheim, pp 531–576

    Chapter  Google Scholar 

  • Yan Z, Tian C, Qu X et al (2017) DNA-functionalized photonic crystal microspheres for multiplex detection of toxic metal ions. Colloids Surf B: Biointerfaces 154:142–149

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Abbas F, Rhouati A et al (2022) Design of a quencher-free fluorescent aptasensor for ochratoxin A detection in red wine based on the guanine-quenching ability. Biosensors (Basel) 12:297

    Article  Google Scholar 

  • Yang C, Wang Y, Marty JL, Yang X (2011) Aptamer-based colorimetric biosensing of ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26:2724–2727

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li W, Shen P et al (2017) Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array. Sens Actuators B Chem 248:351–358

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Z, Wan M et al (2020) Highly sensitive surface-enhanced Raman spectroscopy substrates of Ag@PAN electrospinning nanofibrous membranes for direct detection of bacteria. https://doi.org/10.1021/acsomega.0c02735

  • Ye B, Rong F, Gu H et al (2013) Bioinspired angle-independent photonic crystal colorimetric sensing. Chem Commun 49:5331–5333

    Article  CAS  Google Scholar 

  • Ye BF, Zhao YJ, Cheng Y et al (2012) Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4:5998–6003

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Xu H, Zhao Y et al (2020) Aptamer based high throughput colorimetric biosensor for detection of staphylococcus aureus. Sci Rep 10:1–6

    CAS  Google Scholar 

  • Yue S, Jie X, Wei L et al (2014) Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension array. Anal Chem 86:11797–11802

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yang J, Ye J et al (2016) Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal Biochem 499:51–56

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ganesh N, Block ID, Cunningham BT (2008) High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area. Sens Actuators B Chem 131:279–284

    Article  CAS  Google Scholar 

  • Zhang Y, Wu Q, Sun M, Zhang J, Mo S, Wang J et al (2018) Magnetic-assisted aptamer-based fluorescent assay for allergen detection in food matrix. Sensors Actuators B Chem 263:43–49

    Article  CAS  Google Scholar 

  • Zhao H, Xiang X, Chen M, Ma C (2019) Aptamer-based fluorometric ochratoxin a assay based on photoinduced electron transfer. Toxins (Basel):11–65

    Google Scholar 

  • Zi J, Yu X, Li Y et al (2003) Coloration strategies in peacock feathers. Proc Natl Acad Sci 100:12576–12578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goel, S., Singh, S., Kalyani, N. (2023). Aptamer-Based Optical Sensors for Food Safety. In: Purohit, B., Chandra, P. (eds) Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-99-3025-8_6

Download citation

Publish with us

Policies and ethics