Skip to main content

Smartphone Interface and Wearable Biosensors for on-Site Diagnosis

  • Chapter
  • First Online:
Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices
  • 196 Accesses

Abstract

With the rapid development of next-generation manufacturing, communication, and display technologies, smartphone has been widely integrated with multifunctional modules, such as sensor chips and handheld detectors for biochemical detections. Owing to the merits of high computing speed, high-resolution image analysis, and user-friendly human-computer interface, smartphone-based point-of-care testing (POCT) devices for personalized healthcare provide an affordable and accessible way for on-site diagnosis without using sophisticated and expensive instruments. The conventional biochemical analytical instruments are always bulky, not portable, and especially expensive; therefore, further applications are rather limited. The smartphone-based sensors and electronics have been developing rapidly, playing an increasingly important part upon the challenges confronting medical service, food industry, and public safety. This chapter presents smartphone interface and wearable biosensors for on-site analysis and takes our team’s work as examples to elaborate. The sensing mechanism, design principle of smartphone-based portable and wearable sensing system, and implementation of biosensing strategies were discussed. For better insights into the important and valuable smartphone-based portable and wearable sensing devices, several examples were carefully discussed of device designing, application scenarios, analytical targets, and future applications. In the smartphone-based portable system, optical sensing, electrochemical sensing, and photoelectrochemical sensing were introduced with specific exciting and sampling circuit implementation and on-site diagnosis applications. In the smartphone-based wearable system, we summarized the representative applications of the perspiration analysis system, implantable system, ingestible system, and wound monitoring system. Due to the wide-range permeability rate of smartphone in our lives, it can be expected that smartphone interface and wearable biosensors will gradually complement and dominate the existing health management approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson A, Frederiksen MR, Vegge A, Jensen B, Poulsen M, Mouridsen B et al (2021) Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat Biotechnol 40:103–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H (2020) Towards smart personalized perspiration analysis: an IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens Bioelectron 168:112450

    Article  CAS  PubMed  Google Scholar 

  • Arroyo P, Meléndez F, Suárez JI, Herrero JL, Rodríguez S, Lozano J (2020) Electronic nose with digital gas sensors connected via Bluetooth to a smartphone for air quality measurements. Sensors 20:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashammakhi N, Hernandez AL, Unluturk BD, Quintero SA, Barros NR, Hoque Apu E et al (2021) Biodegradable implantable sensors: materials design, fabrication, and applications. Adv Funct Mater 31:2104149

    Article  CAS  Google Scholar 

  • Bandodkar AJ, Jeerapan I, Wang J (2016) Wearable chemical sensors: present challenges and future prospects. ACS Sensors 1:464–482

    Article  CAS  Google Scholar 

  • Bariya M, Nyein HYY, Javey A (2018) Wearable sweat sensors. Nat Electron 1:160–171

    Article  Google Scholar 

  • Bhaskar S, Moronshing M, Srinivasan V, Badiya PK, Subramaniam C, Ramamurthy SS (2020a) Silver Soret nanoparticles for femtomolar sensing of glutathione in a surface plasmon-coupled emission platform. ACS Appl Nano Mater 3:4329–4341

    Article  CAS  Google Scholar 

  • Bhaskar S, Kowshik NCSS, Chandran SP, Ramamurthy SS (2020b) Femtomolar detection of spermidine using au decorated SiO2 nanohybrid on plasmon-coupled extended cavity nanointerface: a smartphone-based fluorescence dequenching approach. Langmuir 36:2865–2876

    Article  CAS  PubMed  Google Scholar 

  • Bian J, Xing X, Zhou S, Man Z, Lu Z, Zhang W (2019) Patterned plasmonic gradient for high-precision biosensing using a smartphone reader. Nanoscale 11:12471–12476

    Article  CAS  PubMed  Google Scholar 

  • Bobrowski T, Schuhmann W (2018) Long-term implantable glucose biosensors. Curr Opin Electroche 10:112–119

    Article  CAS  Google Scholar 

  • Boutry CM, Kaizawa Y, Schroeder BC, Chortos A, Legrand A, Wang Z et al (2018) A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat Electron 1:314–321

    Article  Google Scholar 

  • Broeders J, Croux D, Peeters M, Beyens T, Duchateau S, Cleij TJ et al (2013) Mobile application for impedance-based biomimetic sensor readout. IEEE Sensors J 13:2659–2665

    Article  Google Scholar 

  • Cao Z, Shu Y, Qin H, Su B, Peng X (2020) Quantum dots with highly efficient, stable, and multicolor electrochemiluminescence. ACS Cent Sci 6:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caratelli V, Ciampaglia A, Guiducci J, Sancesario G, Moscone D, Arduini F (2020) Precision medicine in Alzheimer’s disease: an origami paper-based electrochemical device for cholinesterase inhibitors. Biosens Bioelectron 165:112411

    Article  CAS  PubMed  Google Scholar 

  • Cesewski E, Johnson BN (2020) Electrochemical biosensors for pathogen detection. Biosens Bioelectron 159:112214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229

    Article  CAS  Google Scholar 

  • Chen G, Chai HH, Fu JJ, Yu L, Fang C (2020) A smartphone-supported portable micro-spectroscopy/imaging system to characterize morphology and spectra of samples at the microscale, anal. Methods 12:4166–4171

    CAS  Google Scholar 

  • Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK (2021) Application of smartphone-based spectroscopy to biosample analysis: a review. Biosens Bioelectron 172:112788

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Li X, Xu G, Lu Y, Low SS, Liu G et al (2021a) Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication. Biosens Bioelectron 172:112782

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Wu Y, Li X, An Z, Lu Y, Zhang F et al (2021b) A wireless, ingestible pH sensing capsule system based on iridium oxide for monitoring gastrointestinal health. Sensor Actuat B-Chem 130781

    Google Scholar 

  • Corrie SR, Coffey JW, Islam J, Markey KA, Kendall MA (2015) Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst 140:4350–4364

    Article  CAS  PubMed  Google Scholar 

  • Dimeski G, Badrick T, John AS (2010) Ion selective electrodes (ISEs) and interferences-a review. Clin Chim Acta 411:309–317

    Article  CAS  PubMed  Google Scholar 

  • Farahani M, Shafiee A (2021) Wound healing: from passive to smart dressings. Adv Healthc Mater 10:e2100477

    Article  PubMed  Google Scholar 

  • Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia PT, Guimarães LN, Dias AA, Ulhoa CJ, Coltro WKT (2018) Amperometric detection of salivary α-amylase on screen-printed carbon electrodes as a simple and inexpensive alternative for point-of-care testing. Sensor Actuat B-Chem 258:342–348

    Article  CAS  Google Scholar 

  • Geng Z, Zhang X, Fan Z, Lv X, Su Y, Chen H (2017) Recent progress in optical biosensors based on smartphone platforms. Sensors 17:2449

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Xu D, Chen J, Liu J, Li Y, Song J et al (2018) Smartphone-based analytical biosensors. Analyst 143:5339–5351

    Article  CAS  PubMed  Google Scholar 

  • Huy BT, Nghia NN, Lee Y-I (2020) Highly sensitive colorimetric paper-based analytical device for the determination of tetracycline using green fluorescent carbon nitride nanoparticles. Microchem J 158:105151–105151

    Article  CAS  Google Scholar 

  • Ji D, Liu L, Li S, Chen C, Lu Y, Wu J et al (2017) Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron 98:449–456

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Liu Z, Liu L, Low SS, Lu Y, Yu X et al (2018) Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens Bioelectron 119:55–62

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Xu N, Liu Z, Shi Z, Low SS, Liu J et al (2019) Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens Bioelectron 129:216–223

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Shi Z, Liu Z, Low SS, Zhu J, Zhang T et al (2020) Smartphone-based square wave voltammetry system with screen-printed graphene electrodes for norepinephrine detection. Smart Mater Med 1:1–9

    Article  Google Scholar 

  • Jung W, Han J, Choi J-W, Ahn CH (2015) Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng 132:46–57

    Article  CAS  Google Scholar 

  • Kanchi S, Sabela MI, Mdluli PS, Inamuddin, Bisetty K (2018) Smartphone based bioanalytical and diagnosis applications: a review. Biosens Bioelectron 102:136–149

    Article  CAS  PubMed  Google Scholar 

  • Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17:151–161

    Article  CAS  PubMed  Google Scholar 

  • Katsu Y, Baker ME (2021) Subchapter 123D - cortisol. In: Ando H, Ukena K, Nagata S (eds) Handbook of hormones (2nd ed). Academic Press, San Diego, pp 947–949

    Chapter  Google Scholar 

  • Kim J, Campbell AS, de Avila BE, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37:389–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8768

    Article  CAS  PubMed  Google Scholar 

  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang Q, Lu Y, Zhang D, Liu J, Zhu L et al (2018a) Gold nanoparticles on graphene oxide substrate as sensitive nanoprobes for rapid L-cysteine detection through smartphone-based multimode analysis. Chem Select 3:10002–10009

    CAS  Google Scholar 

  • Li S, Liu J, Lu Y, Zhu L, Li C, Hu L et al (2018b) Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection. Biosens Bioelectron 117:32–39

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang D, Liu J, Cheng C, Zhu L, Li C et al (2019a) Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Biosens Bioelectron 129:284–291

    Article  CAS  PubMed  Google Scholar 

  • Li S, Lu Y, Liu L, Low SS, Su B, Wu J et al (2019b) Fingerprints mapping and biochemical sensing on smartphone by electrochemiluminescence. Sensor Actuat B-Chem 285:34–41

    Article  CAS  Google Scholar 

  • Liang Y, He J, Guo B (2021) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15:12687–12722

    Article  CAS  PubMed  Google Scholar 

  • Lillehoj PB, Huang MC, Truong N, Ho CM (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–2955

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang D, Zhang Q, Chen X, Xu G, Lu Y et al (2017) Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens Bioelectron 93:94–101

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Geng Z, Fan Z, Liu J, Chen H (2019) Point-of-care testing based on smartphone: the current state-of-the-art (2017-2018). Biosens Bioelectron 132:17–37

    Article  CAS  PubMed  Google Scholar 

  • Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Article  CAS  PubMed  Google Scholar 

  • Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCracken KE, Yoon J-Y (2016) Recent approaches for optical smartphone sensing in resource-limited settings: a brief review. Anal Methods 8:6591–6601

    Article  Google Scholar 

  • Menon GK (2002) New insights into skin structure: scratching the surface. Adv Drug Deliver Rev 54:S3–S17

    Article  CAS  Google Scholar 

  • Miller BS, Bezinge L, Gliddon HD, Huang D, Dold G, Gray ER et al (2020) Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature 587:588–593

    Article  CAS  PubMed  Google Scholar 

  • Mirvakili SM, Langer R (2021) Wireless on-demand drug delivery. Nat Electron 4:464–477

    Article  Google Scholar 

  • Nie Y, Liu Y, Zhang Q, Su X, Ma Q (2019) Novel coreactant modifier-based amplified electrochemiluminescence sensing method for point-of-care diagnostics of galactose. Biosens Bioelectron 138:111318–111318

    Article  CAS  Google Scholar 

  • Nimse SB, Sonawane MD, Song KS, Kim T (2016) Biomarker detection technologies and future directions. Analyst 141:740–755

    Article  CAS  PubMed  Google Scholar 

  • Nyein HY, Gao W, Shahpar Z, Emaminejad S, Challa S, Chen K et al (2016) A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca(2+) and pH. ACS Nano 10:7216–7224

    Article  CAS  PubMed  Google Scholar 

  • Oh YS, Kim JH, Xie Z, Cho S, Han H, Jeon SW et al (2021) Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat Commun 12:5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang HH, Ke YC, Li NS, Chen YT, Huang CY, Wei KC et al (2020) A new lateral flow plasmonic biosensor based on gold-viral biomineralized nanozyme for on-site intracellular glutathione detection to evaluate drug-resistance level. Biosens Bioelectron 165:112325–112325

    Article  CAS  PubMed  Google Scholar 

  • Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12:1–15

    Article  Google Scholar 

  • Purohit B, Kumar A, Mahato K, Chandra P (2020) Smartphone-assisted personalized diagnostic devices and wearable sensors, current opinion in biomedical. Engineering 13:42–50

    Google Scholar 

  • Qi H, Zhang C (2020) Electrogenerated chemiluminescence biosensing. Anal Chem 92:524–534

    Article  CAS  PubMed  Google Scholar 

  • Rahn KL, Rhoades TD, Anand RK (2020) Alternating current voltammetry at a bipolar electrode with smartphone luminescence imaging for point-of-need sensing. ChemElectroChem 7:1172–1181

    Article  CAS  Google Scholar 

  • Rosati G, Ravarotto M, Sanavia M, Scaramuzza M, De Toni A, Paccagnella A (2019) Inkjet sensors produced by consumer printers with smartphone impedance readout. Sensing Bio-Sensing Res 26:100308

    Article  Google Scholar 

  • Severi C, Melnychuk N, Klymchenko AS (2020) Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe. Biosens Bioelectron 168:112515

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Lu Y, Chen Z, Cheng C, Xu J, Zhang Q et al (2020) Electrochemical non-enzymatic sensing of glycoside toxins by boronic acid functionalized nano-composites on screen-printed electrode. Sensor Actuat B-Chem 129197

    Google Scholar 

  • Shin Low S, Pan Y, Ji D, Li Y, Lu Y, He Y et al (2020) Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept, vol 308. Sensor Actuat B-Chem, p 127718

    Google Scholar 

  • Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M et al (2011) Cell-phone-based platform for biomedical device development and education applications. PLoS One 6:e17150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun AC, Hall DA (2019) Point-of-care smartphone-based electrochemical biosensing. Electroanalysis 31:2–16

    Article  CAS  Google Scholar 

  • Tang N, Zheng Y, Cui D, Haick H (2021) Multifunctional dressing for wound diagnosis and rehabilitation, vol 10. Adv Healthc Mater, p e2101292

    Google Scholar 

  • Tran V, Walkenfort B, König M, Salehi M, Schlücker S (2019) Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry. Angew Chem Int Edit 58:442–446

    Article  CAS  Google Scholar 

  • Tu Z, Chen M, Wang M, Shao Z, Jiang X, Wang K et al (2021) Engineering bioactive M2 macrophage-polarized anti-inflammatory, antioxidant, and antibacterial scaffolds for rapid angiogenesis and diabetic wound repair. Adv Funct Mater 31:2100924

    Article  CAS  Google Scholar 

  • Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  PubMed  Google Scholar 

  • Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33:692–705

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu X, Chen P, Tran NT, Zhang J, Chia WS et al (2016) Smartphone spectrometer for colorimetric biosensing. Analyst 141:3233–3238

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z et al (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7:9147–9155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Chen Y, Tang Y, Cheng G, Yu X, He H et al (2019) Smartphone-based point-of-care microfluidic platform fabricated with a ZnO nanorod template for colorimetric virus detection. ACS Sensors 4:3298–3307

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Huang X, Guo J, Ma X (2018) Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron 110:78–88

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Cheng C, Liu ZY, Yuan W, Wu XZ, Lu YL et al (2019) Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis. Adv Mater Technol 4:1800658

    Article  CAS  Google Scholar 

  • Xu J, Cheng C, Li X, Lu Y, Hu S, Liu G et al (2021a) Implantable platinum nanotree microelectrode with a battery-free electrochemical patch for peritoneal carcinomatosis monitoring. Biosens Bioelectron 185:113265

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Lu Y, Cheng C, Li X, Xu J, Liu Z et al (2021b) Battery-free and wireless smart wound dressing for wound infection monitoring and electrically controlled on-demand drug delivery. Adv Funct Mater 31:2100852

    Article  CAS  Google Scholar 

  • Yao Y, Jiang C, Ping J (2019) Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens Bioelectron 123:178–184

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lu Y, Jiang J, Zhang Q, Yao Y, Wang P et al (2015a) Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Biosens Bioelectron 67:237–242

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang W, Yang Y, Liu H, Gu Z (2015b) Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement. Analyst 140:7399–7406

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Jiang J, Chen J, Zhang Q, Lu Y, Yao Y et al (2015c) Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2, 4, 6-trinitrotoluene (TNT) detection. Biosens Bioelectron 70:81–88

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y et al (2016) Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensor Actuat B-Chem 222:994–1002

    Article  CAS  Google Scholar 

  • Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY (2017) Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 94:207–218

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Peng J, Song Y, Chen Y, Lu F, Gao W (2019) Porous hollow carbon nanobubbles@ZnCdS multi-shelled dodecahedral cages with enhanced visible-light harvesting for ultrasensitive photoelectrochemical biosensors. Biosens Bioelectron 133:125–132

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chen Z, Shi Z, Li Y, An Z, Li X et al (2021) Smartphone-based photoelectrochemical biosensing system with graphitic carbon nitride/gold nanoparticles modified electrodes for matrix metalloproteinase-2 detection. Biosens Bioelectron 193:113572

    Article  CAS  PubMed  Google Scholar 

  • Zhao WW, Xu JJ, Chen HY (2017) Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 92:294–304

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Tang D (2020) Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC-Trend Anal Chem 124:115814

    Article  CAS  Google Scholar 

  • Zhu H, Yaglidere O, Su T-W, Tseng D, Ozcan A (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Li S, Liu W, Chen J, Yu Q, Zhang Z et al (2021) Real time detection of 3-nitrotyrosine using smartphone-based electrochemiluminescence. Biosens Bioelectron 187:113284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81971703) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ23C100001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, G., Lu, Y., Cheng, C., Xu, J., Liu, Q. (2023). Smartphone Interface and Wearable Biosensors for on-Site Diagnosis. In: Purohit, B., Chandra, P. (eds) Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-99-3025-8_13

Download citation

Publish with us

Policies and ethics