Skip to main content
  • 197 Accesses

Abstract

Pesticides comprise a group of chemical compounds used to control or eliminate pests, insects, or rodents for crop protection. Chemically, pesticides can be broadly classified as organochlorines, organophosphates, carbamates, and pyrethroids. They are known to be neurotoxic to humans and can persist for a prolonged time in the ecosystem. Considering their persistence and toxicity, guidelines have been set in place by different global agencies for limiting their use and defining minimum prescribed limits in diverse sample matrices. Accordingly, sensitive and simple analytical techniques are always in demand to monitor the levels of pesticides in soil, water, or food samples. Nanotechnology is playing a crucial role in overcoming the challenges associated with conventional physical or enzyme-based analytical methods. The unique optical, electrical, magnetic, and catalytic properties of nanomaterials are being smartly used nowadays to detect pesticide residues in trace levels. These new methods are also integrated with smartphones or image analysis software to design point-of-care nanoenabled sensing methods. This chapter presents recent strategies by which nanotechnology is enabling sensitive detection of pesticides along with future ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MH, Hussain KK, Gurudatt NG, Chandra P, Shim Y-B (2018) Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens Bioelectron

    Google Scholar 

  • Barbillon G, Graniel O, Bechelany M (2021) Assembled Au/ZnO Nano-urchins for SERS sensing of the pesticide Thiram. Nano 11:2174

    CAS  Google Scholar 

  • Beketov MA, Schäfer RB, Marwitz A, Paschke A, Liess M (2007) Long-term stream invertebrate community alterations induced by the insecticide: effect concentrations and recovery dynamics. Sci Total Environ 405

    Google Scholar 

  • Bucur B, Munteanu FD, Marty JL, Vasilescu A (2018) Advances in enzyme-based biosensors for pesticide detection. Biosensors 8:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra P, Das D, Abdelwahab AA (2010) Gold nanoparticles in molecular diagnostics and therapeutics. Dig J Nanomater Biostruct 5:363–367

    Google Scholar 

  • Chandra P, Prakash R (2020) Nanobiomaterial engineering. Springer, Singapore

    Book  Google Scholar 

  • Chen N, Liu H, Zhang Y, Zhou Z, Fan W, Yu G, Shen Z, Wu A (2018) A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sensors Actuators B Chem 255:3093–3101

    Article  CAS  Google Scholar 

  • Daizy M, Ali MR, Bacchu MS, Aly MA, Khan MZ (2021) ZnO hollow spheres arrayed molecularly-printed-polymer based selective electrochemical sensor for methyl-parathion pesticide detection. Environ Technol Innov 24:101847

    Article  CAS  Google Scholar 

  • Dinham B, Malik S (2003) Pesticides and human rights. Int J Occup Environ Health 9:40–52

    Article  PubMed  Google Scholar 

  • Dissanayake NM, Arachchilage JS, Samuels TA, Obare SO (2019) Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta 200:218–227

    Article  CAS  PubMed  Google Scholar 

  • Fu J, An X, Yao Y, Guo Y, Sun X (2019a) Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors Actuators B Chem 287:503–509

    Article  CAS  Google Scholar 

  • Fu Q, Zhang C, Xie J, Li Z, Qu L, Cai X, Ouyang H, Song Y, Du D, Lin Y, Tang Y (2019b) Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smart phone. Anal Chim Acta 1092:126–131

    Article  CAS  PubMed  Google Scholar 

  • Ghoorchian A, Kamalabadi M, Amouzegar Z, Aghajani S, Madrakian T, Afkhami A, Ahmadi M (2021) Application of magnetic nanomaterials in plasmonic sensors. Magnetic Nanomater Anal Chem:249–267

    Google Scholar 

  • Helou K, Harmouche-Karaki M, Karake S, Narbonne JF (2019) A review of organochlorine pesticides and polychlorinated biphenyls in Lebanon: environmental and human contaminants. Chemosphere 231:357–368

    Article  CAS  PubMed  Google Scholar 

  • Javaid M, Haleem A, Singh RP, Rab S, Suman R (2021) Exploring the potential of nanosensors: a brief overview. Sensors Int 2:100130

    Article  Google Scholar 

  • Kant R (2020) Surface plasmon resonance based fiber–optic nanosensor for the pesticide fenitrothion utilizing Ta 2 O 5 nanostructures sequestered onto a reduced graphene oxide matrix. Microchim Acta 187:1–1

    Article  Google Scholar 

  • Kaur R, Sharma SK, Tripathy SK (2019) Advantages and limitations of environmental nanosensors. In: Advances in nanosensors for biological and environmental analysis. Elsevier, pp 119–132

    Google Scholar 

  • Klug SJ, Famulok M (1994) All you wanted to know about SELEX. Mol Biol Rep 20:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Arora S, Mogha N, Al-Deyab SS, Ansari ZA, Ansari SG (2013) Glutathione coated zinc oxide nanoparticles: a promising material for pesticide detection. Energy Environ Focus 2:101–107

    Article  Google Scholar 

  • Lee H, Liao JD, Sivashanmugan K, Liu BH, Fu WE, Chen CC, Chen GD, Juang YD (2018) Gold nanoparticle-coated ZrO2-nanofiber surface as a SERS-active substrate for trace detection of pesticide residue. Nano 8:402

    Google Scholar 

  • Leung MC, Meyer JN (2019) Mitochondria as a target of organophosphate and carbamate pesticides: revisiting common mechanisms of action with new approach methodologies. Reprod Toxicol 89:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Ye LY, Mo YY, Yang H (2022) Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal–organic framework nanosensor for environment assessment and food safety. Food Chem 370:131034

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhou L, He Y, Wang L, Huang Z, Jiang Y, Gao J (2018) Hierarchical nanocomposites with an N-doped carbon shell and bimetal core: novel enzyme nanocarriers for electrochemical pesticide detection. Biosens Bioelectron 121:166–173

    Article  CAS  PubMed  Google Scholar 

  • Madianos L, Skotadis E, Tsekenis G, Patsiouras L, Tsigkourakos M, Tsoukalas D (2018) Ιmpedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectron Eng 189:39–45

    Article  CAS  Google Scholar 

  • Moura AC, Lago IN, Cardoso CF, dos Reis NA, Pereira I, Vaz BG (2020) Rapid monitoring of pesticides in tomatoes (Solanum lycopersicum L.) during pre-harvest intervals by paper spray ionization mass spectrometry. Food Chem 310:125938

    Article  CAS  PubMed  Google Scholar 

  • Mu T, Wang S, Li T, Wang B, Ma X, Huang B, Zhu L, Guo J (2018) Detection of pesticide residues using Nano-SERS chip and a smartphone-based Raman sensor. IEEE J Selected Topics Quantum Electron 25:1–6

    Google Scholar 

  • Panda S, Jadav A, Panda N, Mohapatra S (2018) A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. New J Chem 42:2074–2080

    Article  CAS  Google Scholar 

  • Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762

    Article  CAS  Google Scholar 

  • Sakdarat P, Chongsuebsirikul J, Thanachayanont C, Prichanont S, Pungetmongkol P (2021) Development of a nonenzymatic electrochemical sensor for organophosphate pesticide detection using copper (II) oxide Nanorod electrodes. J Nanomater

    Google Scholar 

  • Sharma P, Pandey V, Sharma MM, Patra A, Singh B, Mehta S, Husen A (2021) A review on biosensors and nanosensors application in agroecosystems. Nanoscale Res Lett 16:1–24

    Article  Google Scholar 

  • Sil A (2021) Recent advances in biosensors for pesticide residue detection

    Google Scholar 

  • Singh AP, Balayan S, Hooda V, Sarin RK, Chauhan N (2020) Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. Int J Biol Macromol 164:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Sjerps RM, Kooij PJ, van Loon A, Van Wezel AP (2019) Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235:510–518

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Guo M, Tan J, Geng Y, Huang S, Tang Y, Su C, Lin C, Liang Y (2019) Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sensors Actuators B Chem 291:226–234

    Article  CAS  Google Scholar 

  • Terziev V, Petkova-Georgieva S (2019) Human health problems and classification of the most toxic pesticides. IJASOS-Int E-J Adv Soc Sci 5(15):1349

    Google Scholar 

  • Tian X, Liu L, Li Y, Yang C, Zhou Z, Nie Y, Wang Y (2018) Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sensors Actuators B Chem 256:135–142

    Article  CAS  Google Scholar 

  • Xu Y, Kutsanedzie FY, Hassan M, Zhu J, Ahmad W, Li H, Chen Q (2020) Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem 315:126300

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90:2618–2624

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Peng Y, Bai J, Ning B, Sun S, Hong X, Liu Y, Liu Y, Gao Z (2014) A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer and gold nanomaterials amplification for estradiol detection. Sensors Actuators B Chem 200:69–75

    Article  CAS  Google Scholar 

  • Zhao F, Wu J, Ying Y, She Y, Wang J, Ping J (2018) Carbon nanomaterial-enabled pesticide biosensors: design strategy, biosensing mechanism, and practical application. TrAC Trends Anal Chem 106:62–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We highly acknowledge the support of Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India, for all the support provided toward writing of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Nara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Praharaj, C., Nara, S. (2023). Nanoenabled Sensing Methods for Pesticide Detection. In: Purohit, B., Chandra, P. (eds) Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-99-3025-8_12

Download citation

Publish with us

Policies and ethics