Skip to main content

Functionalized Nanomaterials, Classification, Properties, and Functionalization Techniques

  • Chapter
  • First Online:
Functionalized Nanomaterials Based Supercapacitor

Abstract

The functional nanomaterials have piqued the scientific community's interest due to their unique combination of beneficial chemical and physical properties, such as excellent heat conductivity, excellent electrical conductivity, advanced optical properties, chemical stability, and high mechanical strength. In this chapter, the classification, properties, and various functionalization techniques involved to prepare functionalized nanomaterials are elaborated. Also, the latest technologies and strategies involved in synthesizing nanomaterials with improved functions are also focused for possible applications in a variety of disciplines such as solar thermal fuels, enhanced thermal management, and electrochemical energy storage. The essential design principles of these advanced functional nanomaterials are highlighted, particular synthesis processes are explored, their potential application in devices and applications is underlined, and background information is provided briefly. The design, fabrication, and properties of various functional carbon nanomaterials for various applications are then demonstrated, including carbon-based and non-carbon-based nanomaterials with directional thermal conductivity, electrodes for electrochemical energy storage, electrodes for solar thermal fuels, and light-driven actuators. As a concluding remark, the benefits of using functional nanomaterials in diverse domains as well as the obstacles that have to be overcome and the potential that remains untapped have been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayak V, Singh KR, Singh AK, Singh RP (2021)Potentialities of selenium nanoparticles in biomedical science. New J Chem 45(6):2849–2878

    Google Scholar 

  2. Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA (2021) Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul 38(6):414–436

    Google Scholar 

  3. Chakraborty A, Roy A, Ravi SP, Paul A (2021) Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomater Sci

    Google Scholar 

  4. Rashid MM, Simončič B, Tomšič B (2021)Recent advances in TiO2-functionalized textile surfaces. Surf Interfaces 22:100890

    Google Scholar 

  5. Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Func Mater 22(5):890–906

    Article  Google Scholar 

  6. Heinz H, Pramanik C, Heinz O, Ding Y, Mishra RK, Marchon D, Flatt RJ, Estrela-Lopis I, Llop J, Moya S, Ziolo RF (2017) Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep 72(1):1–58

    Google Scholar 

  7. Kumar SSA, Bashir S, Ramesh K, Ramesh S (2021) A comprehensive review: super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. FlatChem, 100326

    Google Scholar 

  8. Guo R, Li L, Wang B, Xiang Y, Zou G, Zhu Y, Hou H, Ji X (2021) Functionalized carbon dots for advanced batteries. Energy Storage Mater 37:8–39

    Article  Google Scholar 

  9. Mahalingam S, Manap A, Omar A, Low FW, Afandi NF, Chia CH, Abd Rahim N (2021) Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects. Renew Sustain Energy Rev 144:110999

    Google Scholar 

  10. Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095

    Google Scholar 

  11. Mauro N, Utzeri MA, Varvarà P, Cavallaro G (2021) Functionalization of metal and carbon nanoparticles with potential in cancer theranostics. Molecules 26(11):3085

    Google Scholar 

  12. Zhu W, Chen Z, Pan Y, Dai R, Yue W, Zhuang Z, Wang D, Peng Q, Chen C, Li Y (2019) Functionalization of hollow nanomaterials for catalytic applications: nanoreactor construction. Adv Mater 31(38):1800426

    Article  Google Scholar 

  13. Ortiz-Medina J, Wang Z, Cruz-Silva R, Morelos-Gomez A, Wang F, Yao X, Terrones M, Endo M (2019) Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv Mater 31(13):1805717

    Article  Google Scholar 

  14. Chen Z, Cao W, Zhang Z, Wangping W, Wang X, Zhiqiang Y (2018) Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin Chem Lett 29(11):1601–1608

    Article  Google Scholar 

  15. Li Z, Ling Wang Y, Li YF, Feng W (2019) Carbon-based functional nanomaterials: preparation, properties and applications. Compos Sci Technol 179:10–40

    Article  Google Scholar 

  16. Wu Y, Deng P, Tian Y, Magesa F, Liu J, Li G, He Q (2019) Construction of effective electrochemical sensor for the determination of quinoline yellow based on different morphologies of manganese dioxide functionalized graphene. J Food Compos Anal 84:103280

    Article  Google Scholar 

  17. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730

    Article  Google Scholar 

  18. Olivieri F, Castaldo R, Cocca M, Gentile G, Lavorgna M (2021) Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review. Nanoscale 13(20):9091–9111

    Article  Google Scholar 

  19. Zou Y, Huang B, Cao L, Deng Y, Jiacan S (2021) Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering. Adv Mater 33(2):2005215

    Article  Google Scholar 

  20. Young C, Park T, Yi JW, Kim J, Hossain MS, Kaneti YV, Yamauchi Y (2018) Advanced functional carbons and their hybrid nanoarchitectures towards supercapacitor applications. ChemSusChem 11(20):3546–3558

    Google Scholar 

  21. Saraf M, Rajak R, Mobin SM (2019) MOF derived high surface area enabled porous Co3O4 nanoparticles for supercapacitors. ChemistrySelect 4(27):8142–8149

    Article  Google Scholar 

  22. Luo X-Y, Chen Y, Mo Y (2021) A review of charge storage in porous carbon-based supercapacitors. New Carbon Mater 36(1):49–68

    Article  Google Scholar 

  23. Chen BB, Liu ML, Li CM, Huang CZ (2019) Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 270:165–190

    Google Scholar 

  24. Kou X, Jiang S, Park S-J, Meng L-Y (2020) A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans 49(21):6915–6938

    Article  Google Scholar 

  25. Milowska KZ, Burda M, Wolanicka L, Bristowe PD, Koziol KK (2019) Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites. Nanoscale 11(1):145–157

    Google Scholar 

  26. Johnson AP, Gangadharappa HV, Pramod K (2020) Graphene nanoribbons: a promising nanomaterial for biomedical applications. J Controll Release 325:141–162

    Google Scholar 

  27. Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL (2019) Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res 52(6):1632–1642

    Article  Google Scholar 

  28. Wang Y, Rui H, Lin G, Roy I, Yong K-T (2013) Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl Mater Interfaces 5(8):2786–2799

    Article  Google Scholar 

  29. Jung JH, Lee JH, Shinkai S (2011)Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem Soc Rev 40(9):4464–4474

    Google Scholar 

  30. Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18

    Google Scholar 

  31. Karimi-Maleh H, Cellat K, Arıkan K, Savk A, Karimi F, Şen F (2020) Palladium–Nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater Chem Phys 250:123042

    Article  Google Scholar 

  32. Hu W, Zhou W, Lei X, Zhou P, Zhang M, Chen T, Zeng H et al (2019) Low‐temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv Mater 31(8):1806095

    Google Scholar 

  33. Sgobba V, Guldi DM (2009) Carbon nanotubes—Electronic/electrochemical properties and application for nanoelectronics and photonics. Chem Soc Rev 38(1):165–184

    Article  Google Scholar 

  34. Giansante C (2020) Library design of ligands at the surface of colloidal nanocrystals. Acc Chem Res 53(8):1458–1467

    Article  Google Scholar 

  35. Ploetz E, Engelke H, Lächelt U, Wuttke S (2020) The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv Func Mater 30(41):1909062

    Article  Google Scholar 

  36. Zadehnazari A (2022) Metal oxide/polymer nanocomposites: a review on recent advances in fabrication and applications. Polym-Plast Technol Mater, 1–46

    Google Scholar 

  37. Ogbonna VE, Popoola API, Popoola OM, Adeosun SO (2022) A review on the recent advances on improving the properties of epoxy nanocomposites for thermal, mechanical, and tribological applications: challenges and recommendations. Polym-Plast Technol Mater 61(2):176–195

    Google Scholar 

  38. Saleh TA (2020) Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov 20:101067

    Article  Google Scholar 

  39. Deshmukh R, Niederberger M (2017) Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents. Chem Euro J 23(36):8542–8570

    Google Scholar 

  40. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Kanaras AG (2019) The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 119(8):4819–4880

    Article  Google Scholar 

  41. Hanske C, Sanz-Ortiz MN, Liz-Marzán LM (2020) Silica-coated plasmonic metal nanoparticles in action. In: Colloidal synthesis of plasmonic nanometals, pp 755–820

    Google Scholar 

  42. Steiner AM, Lissel F, Fery A, Lauth J, Scheele M (2021) Prospects of coupled organic–inorganic nanostructures for charge and energy transfer applications. Angew Chem Int Ed 60(3):1152–1175

    Article  Google Scholar 

  43. Ji X, Wang W, Mattoussi H (2016) Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: concepts and applications. Nano Today 11(1):98–121

    Article  Google Scholar 

  44. Kumar M, Gehlot PS, Parihar D, Surolia PK, Prasad G (2021) Promising grafting strategies on cellulosic backbone through radical polymerization processes—A review. Eur Polymer J 152:110448

    Article  Google Scholar 

  45. Zhou Y, Guo Z, Hou W, Wang Q, Wang J (2015) Polyoxometalate-based phase transfer catalysis for liquid–solid organic reactions: a review. Catal Sci Technol 5(9):4324–4335

    Article  Google Scholar 

  46. Sodipo BK, Aziz AA (2016) Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J Magn Magn Mater 416:275–291

    Article  Google Scholar 

  47. Dheyab MA, Aziz AA, Jameel MS, Noqta OA, Mehrdel B (2020) Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications. Chin J Phys 64:305–325

    Article  Google Scholar 

  48. Liu J, Ye Y, Xue Y, Xie X, Mai YW (2017) Recent advances in covalent functionalization of carbon nanomaterials with polymers: strategies and perspectives. J Polym Sci Part A: Polym Chem 55(4):622–631

    Article  Google Scholar 

  49. Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K (2022) Covalent and non-covalent functionalized nanomaterials for environmental restoration. Top Curr Chem 380(5):1–113

    Google Scholar 

  50. Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 19(2):392

    Article  Google Scholar 

  51. Konduru NV, Murdaugh KM, Swami A, Jimenez RJ, Donaghey TC, Demokritou P, Brain JD, Molina RM (2016) Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation. Nanotoxicology 10(6):720–727

    Article  Google Scholar 

  52. Reina G, Zhao L, Bianco A, Komatsu N (2019) Chemical functionalization of nanodiamonds: opportunities and challenges ahead. Angew Chem Int Ed 58(50):17918–17929

    Article  Google Scholar 

  53. Ghosh SK, Böker A (2019) Self-assembly of nanoparticles in 2D and 3D: recent advances and future trends. Macromol Chem Phys 220(17):1900196

    Article  Google Scholar 

  54. Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello JC (2019) Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2:100007

    Article  Google Scholar 

  55. Della Sala F, Neri S, Maiti S, Chen JL, Prins LJ (2017) Transient self-assembly of molecular nanostructures driven by chemical fuels. Curr Opin Biotechnol 46:27–33

    Article  Google Scholar 

  56. Huang S, Yu H, Li Q (2021) Supramolecular chirality transfer toward chiral aggregation: asymmetric hierarchical self-assembly. Advanced Sci 8(8):2002132

    Article  Google Scholar 

  57. Mosayebi J, Kiyasatfar M, Laurent S (2017) Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthc Mater 6(23):1700306

    Article  Google Scholar 

  58. Awad NK, Edwards SL, Morsi YS (2017) A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C 76:1401–1412

    Article  Google Scholar 

  59. Rutkowska IA, Wadas A, Szaniawska E, Chmielnicka A, Zlotorowicz A, Kulesza PJ (2020) Elucidation of activity of copper and copper oxide nanomaterials for electrocatalytic and photoelectrochemical reduction of carbon dioxide. Curr Opin Electrochem 23:131–138

    Article  Google Scholar 

  60. Galstyan V, Comini E, Ponzoni A, Sberveglieri V, Sberveglieri G (2016) ZnO quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric chemical sensors. Chemosensors 4(2):6

    Article  Google Scholar 

  61. Mallakpour S, Soltanian S (2016) Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv 6(111):109916–109935

    Article  Google Scholar 

  62. Nguyen MD, Tran HV, Xu S, Lee TR (2021) Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci 11(23):11301

    Article  Google Scholar 

  63. Sciuto EL, Bongiorno C, Scandurra A, Petralia S, Cosentino T, Conoci S, Libertino S (2018) Functionalization of bulk SiO2 surface with biomolecules for sensing applications: Structural and functional characterizations. Chemosensors 6(4):59

    Article  Google Scholar 

  64. Yang GH, Bao DD, Liu H, Zhang DQ, Wang N, Li HT (2017) Functionalization of graphene and applications of the derivatives. J Inorg Organomet Polym Mater 27(5):1129–1141

    Article  Google Scholar 

  65. Li Z, Wang L, Li Y, Feng Y, Feng W (2019) Carbon-based functional nanomaterials: preparation, properties and applications. Compos Sci Technol 179:10–40

    Article  Google Scholar 

  66. Hebbar RS, Isloor AM, Asiri AM (2017) Carbon nanotube-and graphene-based advanced membrane materials for desalination. Environ Chem Lett 15(4):643–671

    Article  Google Scholar 

  67. Wernik JM, Cornwell-Mott BJ, Meguid SA (2012) Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model. Int J Solids Struct 49(13):1852–1863

    Article  Google Scholar 

  68. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105

    Article  Google Scholar 

  69. Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte für Chemie-Chem Monthly 139(3):183–195

    Article  Google Scholar 

  70. Amstad E, Textor M, Reimhult E (2011) Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3(7):2819–2843

    Article  Google Scholar 

  71. Alavi M, Kowalski R, Capasso R, Douglas Melo Coutinho H, Rose Alencar De Menezes I (2022) Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells. Micro Nano Bio Aspects 1(1):38–48

    Google Scholar 

  72. Farrusseng D, Tuel A (2016) Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J Chem 40(5):3933–3949

    Article  Google Scholar 

  73. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

    Article  Google Scholar 

  74. Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J (2021) Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. Nanoscale 13(38):15998–16016

    Article  Google Scholar 

  75. Margelefsky EL, Zeidan RK, Davis ME (2008) Cooperative catalysis by silica-supported organic functional groups. Chem Soc Rev 37(6):1118–1126

    Article  Google Scholar 

  76. Ghanooni S, Nikfarjam N, Makvandi P (2020) Surface reactive and active polymers. React Funct Polym 4:35–54

    Google Scholar 

  77. Afif A, Rahman SM, Azad AT, Zaini J, Islan MA, Azad AK (2019) Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. J Energy Storage 25:100852

    Article  Google Scholar 

  78. Wang X, Yin S, Jiang J, Xiao H, Li X (2020) A tightly packed Co3O4/C&S composite for high-performance electrochemical supercapacitors from a cobalt (III) cluster-based coordination precursor. J Solid State Chem 288:121435

    Article  Google Scholar 

  79. Liu G, Ma L, Liu Q (2020) The preparation of Co3O4@MnO2 hierarchical nano-sheets for high-output potential supercapacitors. Electrochim Acta 364:137265

    Google Scholar 

  80. Nagarajarao SH, Nandagudi A, Viswanatha R, Basavaraja BM, Santosh MS, Praveen BM, Pandith A (2022) Recent developments in supercapacitor electrodes: a mini review. ChemEngineering 6(1). https://doi.org/10.3390/chemengineering6010005

  81. Cakici M, Kakarla RR, Marroquin FA (2017) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes, Chem Eng J 309:151–158

    Google Scholar 

  82. Wu D, Xie X, Zhang Y, Zhang D, Du W, Zhang X, Wang B (2020) MnO2/Carbon composites for supercapacitor: synthesis and electrochemical performance. Front Mater 7:1–16. https://doi.org/10.3389/fmats.2020.00002

    Article  Google Scholar 

  83. Li Q, Lu XF, Xu H, Tong YX, Li GR (2014) Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitor. ACS Appl Mater Interfaces 6(4):2726–2733

    Article  Google Scholar 

  84. Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sour 269:760–767

    Google Scholar 

  85. Liu X, Liang B, Hong X, Long J (2022) Electrochemical performance of MnO2/graphene flower-like microspheres prepared by thermally-exfoliated graphite. Front Chem Nanosci 10. https://doi.org/10.3389/fchem.2022.870541

  86. Jaidev RIJ, Mishra AK, Ramaprabhu S (2011) Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J Mater Chem 21:17601

    Article  Google Scholar 

  87. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  Google Scholar 

  88. Pang H, Wang S, Li G, Ma Y, Li J, Li X, Zhang L, Zhang J, Zheng H (2013) Cu superstructures fabricated using tree leaves and Cu–MnO2 superstructures for high performance supercapacitors. J Mater Chem A 1:5053–5060

    Article  Google Scholar 

  89. Su Z, Yang C, Xie B, Lin Z, Zhang Z, Liu J, Li B, Kang F, Wong CP (2014) Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy Environ Sci 7:2652–2659

    Article  Google Scholar 

  90. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors. J Power Sour 252:98–106

    Article  Google Scholar 

  91. Zou R, Yuen MF, Zhang Z, Hu J, Zhang W (2015) Three-dimensional networked NiCo2O4/MnO2 branched nanowire heterostructure arrays on nickel foam with enhanced supercapacitor performance. J Mater Chem A 3:1717–1723

    Article  Google Scholar 

  92. Wang P, Liu H, Tan Q, Yang J (2014) Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor. RSC Adv 4(81):42839–42845

    Article  Google Scholar 

  93. Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:9–14

    Google Scholar 

  94. Chung YC, Julistian A, Saravanan L, Chen PR, Xu BC, Xie PJ, Lo AY (2022) Hydrothermal synthesis of CuO/RuO2/MWCNT nanocomposites with morphological variants for high efficient supercapacitors. Catalysts 12(1):1–12

    Google Scholar 

  95. Pusawale SN, Deshmukh PR, Jadhav PS, Lokhande CD (2019) Electrochemical properties of chemically synthesized SnO2–RuO2 mixed films. Mater Renew Sustain Energy 8:1–9

    Article  Google Scholar 

  96. Varshney B, Siddiqui MJ, Anwer AH, Khan MZ, Ahmed F, Aljaafari A, Azam A (2020) Synthesis of mesoporous nanocomposite using modified sol–gel method and its electrochemical performance as electrode material for supercapacitors. Sci Rep, 1–13

    Google Scholar 

  97. Asaithambi S, Sakthivel P, Karuppaiah M, Yuvakkumar R, Balamurugan K, Ahamad T, Majeed Khan MA, Ramalingam G, Mohammed MKA, Ravi G (2021) Preparation of Fe-SnO2@CeO2 nanocomposite electrode for asymmetric supercapacitor device performance analysis. J Energy Storage 36:102402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Lakshmi or P. Christopher Selvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakshmi, D., Diana, M.I., Helen, P.A., Selvin, P.C. (2024). Functionalized Nanomaterials, Classification, Properties, and Functionalization Techniques. In: Hussain, C.M., Ahamed, M.B. (eds) Functionalized Nanomaterials Based Supercapacitor. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3021-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3021-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3020-3

  • Online ISBN: 978-981-99-3021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics