Skip to main content

Nonfusion Techniques in Pediatric Scoliosis

  • Chapter
  • First Online:
Paediatric Scoliosis
  • 237 Accesses

Abstract

A challenging problem in spine surgery is managing scoliosis, especially early-onset scoliosis. With the advent of newer instrumentation techniques, deformities in small children can be corrected effectively. However, correction and fusion do not always solve the problem of deformity in the growing spine, as early fusion may have disastrous consequences on truncal height and vital organ growth. This complicates its management; on the one hand, the spine deformity must be controlled, and on the other hand, the spine should be allowed to grow so that the development of internal organs, especially the lung, is not jeopardized. This has led to an increased focus on nonfusion and growth-friendly treatment strategies for which the treatment indications and contraindications are still evolving, as the long- and medium-term data are still pouring in through various studies performed by researchers and practitioners over the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimeglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J. 2012;21(1):64–70. https://doi.org/10.1007/s00586-011-1983-3. Epub 2011 Aug 30.

    Article  PubMed  Google Scholar 

  2. Akbarnia BA, Campbell RM, Dimeglio A, Flynn JM, Redding GJ, Sponseller PD, Vitale MG, Yazici M. Fusionless procedures for the management of early-onset spine deformities in 2011: what do we know? J Child Orthop. 2011;5(3):159–72. https://doi.org/10.1007/s11832-011-0342-6. Epub 2011 Apr 27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campbell RM, Smith MD, Mayes TC, et al. The characteristics of thoracic insufficiency associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2003;85:399–408.

    Article  PubMed  Google Scholar 

  4. Campbell MR, Hell-Vocke AK. Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am. 2003;85:409–20.

    Article  PubMed  Google Scholar 

  5. Swank SM, Winter RB, Moe JH. Scoliosis and cor pulmonale. Spine. 1982;7:343–54.

    Article  CAS  PubMed  Google Scholar 

  6. Dimeglio A, Bonnel F, Canavese F. Normal growth of the spine and thorax. In: Akbarnia B, Yazici M, Thompson GH, editors. The growing spine. New York: Springer; 2009. p. 11–41.

    Google Scholar 

  7. Charles YP, Dimeglio A, Marcoul A, et al. Influence of idiopathic scoliosis on three-dimensional thoracic growth spine. Spine. 2008;33(11):1209–18.

    Article  PubMed  Google Scholar 

  8. Karol L, Johston C, Mladenov K, et al. Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J Bone Joint Surg Am. 2008;90:1272–81.

    Article  PubMed  Google Scholar 

  9. Pehrsson K, Larsson S, Oden A, et al. Long-term follow-up of patients with untreated scoliosis, a study of mortality causes of death, and symptoms. Spine. 1992;17:1091–6.

    Article  CAS  PubMed  Google Scholar 

  10. Skaggs DL, Akbarnia BA, Flynn JM, Myung KS, Sponseller PD, Vitale MG, Chest Wall and Spine Deformity Study Group; Growing Spine Study Group; Pediatric Orthopedic Society of North America; Scoliosis Research Society Growing Spine Study Committee. A classification of growth friendly spine implants. J Pediatr Orthop. 2014;34(3):260–74. https://doi.org/10.1097/BPO.0000000000000073.

    Article  PubMed  Google Scholar 

  11. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44-A:591–610.

    Article  CAS  PubMed  Google Scholar 

  12. Varley ES, Pawelek JB, Mundis GM Jr, Oetgen ME, Sturm PF, Akbarnia BA, Pediatric Spine Study Group, Yaszay B. The role of traditional growing rods in the era of magnetically controlled growing rods for the treatment of early-onset scoliosis. Spine Deform. 2021;9(5):1465–72. https://doi.org/10.1007/s43390-021-00332-4. Epub 2021 Apr 19.

    Article  PubMed  Google Scholar 

  13. Guiroy A, Sícoli A, Masanés NG, Ciancio AM, Gagliardi M, Falavigna A. How to perform the Wiltse posterolateral spinal approach: technical note. Surg Neurol Int. 2018;9:38. https://doi.org/10.4103/sni.sni_344_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouthors C, Gaume M, Glorion C, Miladi L. Outcomes at skeletal maturity of 34 children with scoliosis treated with a traditional single growing rod. Spine (Phila Pa 1976). 2019;44(23):1630–7. https://doi.org/10.1097/BRS.0000000000003148.

    Article  PubMed  Google Scholar 

  15. Jayaswal A, Kandwal P, Goswami A, Vijayaraghavan G, Jariyal A, Upendra BN, Gupta A. Early onset scoliosis with intraspinal anomalies: management with growing rod. Eur Spine J. 2016;25(10):3301–7. https://doi.org/10.1007/s00586-016-4566-5. Epub 2016 Apr 12

    Article  PubMed  Google Scholar 

  16. Garg B, Mohapatra S, Mehta N. Is routine intraoperative neuromonitoring necessary in growing rod lengthening procedures? A retrospective, observational study. Spine Deform. 2020;8:1369–74.

    Article  PubMed  Google Scholar 

  17. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA. Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine. 2005;30(17 Suppl):S46–57.

    Article  PubMed  Google Scholar 

  18. Yang JS, McElroy MJ, Akbarnia BA, Salari P, Oliveira D, Thompson GH, Emans JB, Yazici M, Skaggs DL, Shah SA, Kostial PN, Sponseller PD. Growing rods for spinal deformity: characterizing consensus and variation in current use. J Pediatr Orthop. 2010;30(3):264–70. https://doi.org/10.1097/BPO.0b013e3181d40f94.

    Article  PubMed  Google Scholar 

  19. Wijdicks SPJ, Tromp IN, Yazici M, Kempen DHR, Castelein RM, Kruyt MC. A comparison of growth among growth-friendly systems for scoliosis: a systematic review. Spine J. 2019;19:789–99.

    Article  PubMed  Google Scholar 

  20. Bess S, Akbarnia BA, Thompson GH, et al. Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am. 2010;92:2533e43.

    Article  Google Scholar 

  21. Choi E, Yaszay B, Mundis G, Hosseini P, Pawelek J, Alanay A, et al. Implant complications after magnetically controlled growing rods for early onset scoliosis: amulticenter retrospective review. J Pediatr Orthop. 2017;37(8):e588–92.

    Article  PubMed  Google Scholar 

  22. Shah SA, Karatas AF, Dhawale AA, Dede O, Mundis GM Jr, Holmes L Jr, et al. The effect of serial growing rod lengthening on the sagittal profile and pelvic parameters in early-onset scoliosis. Spine. 2014;39(22):E1311–7.

    Article  PubMed  Google Scholar 

  23. Sankar WN, Skaggs DL, Yazici M, et al. Lengthening of dual growing rods and the law of diminishing returns. Spine (Phila Pa 1976). 2011;36:806–9.

    Article  PubMed  Google Scholar 

  24. Agarwal A, Goswami A, Vijayaraghavan GP, Srivastava A, Kandwal P, Nagaraja UB, Goel VK, Agarwal AK, Jayaswal A. Quantitative characteristics of consecutive lengthening episodes in early-onset scoliosis (EOS) patients with dual growth rods. Spine (Phila Pa 1976). 2019;44(6):397–403. https://doi.org/10.1097/BRS.0000000000002835.

    Article  PubMed  Google Scholar 

  25. Inaparthy P, Queruz JC, Bhagawati D, Thakar C, Subramanian T, Nnadi C. Incidence of proximal junctional kyphosis with magnetic expansion control rods in early onset scoliosis. Eur Spine. 2016;J25(10):3308–15.

    Article  Google Scholar 

  26. Akbarnia BA, Mundis GM. Magnetically controlled growing rods in early onset scoliosis. Indications, timing and treatment. Orthopäde. 2019;48:477–85. https://doi.org/10.1007/s00132-019-03755-0.

    Article  CAS  PubMed  Google Scholar 

  27. Akbarnia BA, Pawelek JB, Cheung KM, Demirkiran G, Elsebaie H, Emans JB, et al. Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early onset scoliosis: a case-matched 2-year study. Spine Deform. 2014;2(6):493–7.

    Article  PubMed  Google Scholar 

  28. https://atlasapi.nuvasive.com/public/ifu/documents/retrieve?get&pVersion=0046&contRep=ZNUVEP1&docId=0050568619A61EDD81F6F5930C4DE14A&compId=LC0063_V_MASTER.pdf.

  29. Tan KA, Sewell MD, Clarke AJ, Chan D, Stokes OM, Khan SN, et al. Recommendations for lengthening of magnetically controlled growing rods in children with pacemakers. J Pediatr Orthop. 2017;37(4):e250–4.

    Article  PubMed  Google Scholar 

  30. Budd HR, Stokes OM, Meakin J, Fulford J, Hutton M. Safety and compatibility of magnetic controlled growing rods and magnetic resonance imaging. Eur Spine J. 2016;25:578–82.

    Article  PubMed  Google Scholar 

  31. Hosseini P, Akbarnia BA, Tran S, Zhang J, Pawelek J, Johnston CE, Shah S, Emans J, Mundis GM, Yaszay B, Samdani A, Sturm PF, CSSG, editors. Does rod orientation and use of cross connector affect spinal height in magnetically controlled growing rod patients? San Diego: ICEOS; 2017.

    Google Scholar 

  32. Cheung KKK, Samartzis D, Alanay A, Ferguson J, Nnadi C, Helenius I, Yazici M, Demirkiran G, Akbarnia B (eds.) What are the effects of changing the frequency of distraction in magnetically controlled growing rod lengthening in early-onset scoliosis? 50th annual meeting and course of the Scoliosis Research Society (SRS), Minneapolis, MN; 2015.

    Google Scholar 

  33. Agarwal A, Agarwal AK, Jayaswal A, Goel V. Smaller interval distractions may reduce chances of growth rod breakage without impeding desired spinal growth: a finite element study. Spine Deform. 2014;2(6):430–6. https://doi.org/10.1016/j.jspd.2014.08.004. Epub 2014 Oct 27.

    Article  PubMed  Google Scholar 

  34. Gilday SE, Schwartz MS, Bylski-Austrow DI, Glos DL, Schultz L, O’Hara S, et al. Observed length increases of magnetically controlled growing rods are lower than programmed. J Pediatr Orthop. 2018;38(3):e133–7.

    Article  PubMed  Google Scholar 

  35. Agarwal A, Kelkar A, Garg Agarwal A, Jayaswal D, Jayaswal A, Shendge V. Device-related complications associated with Magec rod usage for distraction-based correction of scoliosis. Spine Surg Relat Res. 2019;4(2):148–51. https://doi.org/10.22603/ssrr.2019-0041.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bess S, Akbarnia BA, Thompson GH, Sponseller PD, Shah SA, El Sebaie H, et al. Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am Vol. 2010;92(15):2533–43.

    Article  Google Scholar 

  37. Inaparthy P, Queruz JC, Bhagawati D, Thakar C, Subramanian T, Nnadi C. Incidence of proximal junctional kyphosis with magnetic expansion control rods in early onset scoliosis. Eur Spine J. 2016;25(10):3308–15.

    Article  CAS  PubMed  Google Scholar 

  38. Carender CN, Morris WZ, Poe-Kochert C, Thompson GH, Son-Hing JP, Liu RW. Low pelvic incidence is associated with proximal junctional kyphosis in patients treated with growing rods. Spine. 2016;41(9):792–7.

    Article  PubMed  Google Scholar 

  39. El-Hawary R, Sturm P, Cahill P, Samdani A, Vitale M, Gabos P, et al. What is the risk of developing proximal junctional Kyphosis during growth friendly treatments for early-onset scoliosis? J Pediatr Orthop. 2017;37(2):86–91.

    Article  PubMed  Google Scholar 

  40. Watanabe K, Uno K, Suzuki T, Kawakami N, Tsuji T, Yanagida H, et al. Risk factors for proximal junctional kyphosis associated with dual-rod growing-rod surgery for early-onset scoliosis. Clin Spine Surg. 2016;29(8):E428–33.

    Article  PubMed  Google Scholar 

  41. Cheung JPY, Yiu KKL, Samartzis D, Kwan K, Tan BB, Cheung KMC. Rod lengthening with the magnetically controlled growing rod: factors influencing rod slippage and reduced gains during distractions. Spine (Phila Pa 1976). 2017;43(7):E399–405. https://doi.org/10.1097/BRS.0000000000002358.

    Article  Google Scholar 

  42. Teoh KH, von Ruhland C, Evans SL, James SH, Jones A, Howes J, et al. Metallosis following implantation of magnetically controlled growing rods in the treatment of scoliosis: a case series. Bone Joint J. 98-b. 2016;98-B(12):1662–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ahuja K, Ifthekar S, Mittal S, Bali SK, Yadav G, Goyal N, Sudhakar PV, Kandwal P. Is final fusion necessary for growing-rod graduates: a systematic review and meta-analysis. Global. Spine J. 2022;13:21925682221090926. https://doi.org/10.1177/21925682221090926. Epub ahead of print.

    Article  Google Scholar 

  44. Luque ER. Paralytic scoliosis in growing children. Clin Orthop Relat Res. 1982;163:202–9.

    Article  Google Scholar 

  45. Mardjetko SM, Hammerberg KW, Lubicky JP, Fister JS. The Luque trolley revisited. Review of nine cases requiring revision. Spine (Phila Pa 1976). 1992;17(5):582–9.

    Article  CAS  PubMed  Google Scholar 

  46. Diab MG, Franzone JM, Vitale MG. The role of posterior spinal osteotomies in pediatric spinal deformity surgery: indications and operative technique. J Pediatr Orthop. 2011;31(1 Suppl):S88–98.

    Article  PubMed  Google Scholar 

  47. McCarthy RE, Luhmann S, Lenke L, McCullough FL. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop. 2014;34(1):1–7.

    Article  PubMed  Google Scholar 

  48. Dubousset J, Herring JA, Shufflebarger H. The crankshaft phenomenon. J Pediatr Orthop. 1989;9(5):541–50.

    Article  CAS  PubMed  Google Scholar 

  49. Sanders JO, Little DG, Richards BS. Prediction of the crankshaft phenomenon by peak height velocity. Spine (Phila Pa 1976). 1997;22(12):1352–6. discussion 1356-7

    Article  CAS  PubMed  Google Scholar 

  50. Ahmad AA, Agarwal A. Active apex correction: an overview of the modified SHILLA technique and its clinical efficacy. J Clin Orthop Trauma 2020;11(5):848–852. doi: https://doi.org/10.1016/j.jcot.2020.07.013. Epub 2020 Jul 23. Erratum in: J Clin Orthop Trauma. 2021;21:101559.

  51. McCarthy RE, McCullough FL. Shilla growth guidance for early-onset scoliosis: results after a minimum of five years of follow-up. J Bone Joint Surg Am. 2015;97(19):1578–84. https://doi.org/10.2106/JBJS.N.01083.

    Article  PubMed  Google Scholar 

  52. Wijdicks SPJ, Tromp IN, Yazici M, Kempen DHR, Castelein RM, Kruyt MC. A comparison of growth among growth-friendly systems for scoliosis: a systematic review. Spine J. 2019;19:789e99.

    Article  Google Scholar 

  53. Nazareth A, Skaggs DL, Illingworth KD, Parent S, Shah SA, Sanders JO, Andras LM, Growing Spine Study Group. Growth guidance constructs with apical fusion and sliding pedicle screws (SHILLA) results in approximately 1/3rd of normal T1-S1 growth. Spine Deform. 2020;8(3):531–5. https://doi.org/10.1007/s43390-020-00076-7. Epub 2020 Feb 24.

    Article  PubMed  Google Scholar 

  54. Wilkinson JT, Songy CE, Bumpass DB, McCullough FL, McCarthy RE. Curve modulation and apex migration using Shilla growth guidance rods for early-onset scoliosis at 5-year follow-up. J Pediatr Orthop. 2019;39(8):400–5. https://doi.org/10.1097/BPO.0000000000000983.

    Article  PubMed  Google Scholar 

  55. Waldhausen JH, Redding GJ, Song KM. Vertical expandable prosthetic titanium rib for thoracic insufficiency syndrome: a new method to treat an old problem. J Pediatr Surg. 2007;42:76–80.

    Article  PubMed  Google Scholar 

  56. Parnell SE, Effmann EL, Song K, Swanson JO, Bompadre V, Phillips GS. Vertical expandable prosthetic titanium rib (VEPTR): a review of indications, normal radiographic appearance and complications. Pediatr Radiol. 2015;45(4):606–16. https://doi.org/10.1007/s00247-014-3128-4. Epub 2014 Sep 21

    Article  PubMed  Google Scholar 

  57. Samdani AF, Ranade A, Dolch HJ, et al. Bilateral use of the vertical expandable prosthetic titanium rib attached to the pelvis: a novel treatment for scoliosis in the growing spine. J Neurosurg Spine. 2009;10:287–92.

    Article  PubMed  Google Scholar 

  58. Schulz JF, Smith J, Cahill PJ, et al. The role of the vertical expandable titanium rib in the treatment of infantile idiopathic scoliosis: early results from a single institution. J Pediatr Orthop. 2010;30:659–63.

    Article  PubMed  Google Scholar 

  59. Campbell RM Jr, Smith MD, Mayes TC, et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 86-A:1659–1674. 2004;86:1659.

    Article  PubMed  Google Scholar 

  60. El-Hawary R, Morash K, Kadhim M, Vitale M, Smith J, Samdani A, Flynn J, Children’s Spine Study Group. VEPTR treatment of early onset scoliosis in children without rib abnormalities: long-term results of a prospective, multicenter study. J Pediatr Orthop. 2020;40(6):e406–12. https://doi.org/10.1097/BPO.0000000000001454.

    Article  PubMed  Google Scholar 

  61. Akbarnia BA, Emans JB. Complications of growth-sparing surgery in early onset scoliosis. Spine. 2010;35:2193–204.

    Article  PubMed  Google Scholar 

  62. Sankar WN, Acevedo DC, Skaggs DL. Comparison of complications among growing spinal implants. Spine. 2010;35:2091–6.

    Article  PubMed  Google Scholar 

  63. Sarwark J. Growth considerations of the immature spine. J Bone Joint Surg Am. 2007;89(suppl 1):8–13.

    PubMed  Google Scholar 

  64. Betz RR, Ranade A, Samdani AF, Chafetz R, D’Andrea LP, Gaughan JP, Asghar J, Grewal H, Mulcahey MJ. Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(2):169–76. https://doi.org/10.1097/BRS.0b013e3181c6dff5.

    Article  PubMed  Google Scholar 

  65. Betz RR, Kim J, D’Andrea LP, et al. An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis: a feasibility, safety, and utility study. Spine. 2003;28:S255–65.

    Article  PubMed  Google Scholar 

  66. Trupia E, Hsu AC, Mueller JD, Matsumoto H, Bodenstein L, Vitale M. Treatment of idiopathic scoliosis with vertebral body stapling. Spine Deform. 2019;7(5):720–8. https://doi.org/10.1016/j.jspd.2019.01.006.

    Article  PubMed  Google Scholar 

  67. Bumpass DB, Fuhrhop SK, Schootman M, Smith JC, Luhmann SJ. Vertebral body stapling for moderate juvenile and early adolescent idiopathic scoliosis: cautions and patient selection criteria. Spine (Phila Pa 1976). 2015;40(24):E1305–14. https://doi.org/10.1097/BRS.0000000000001135.

    Article  PubMed  Google Scholar 

  68. Cuddihy L, Danielsson AJ, Cahill PJ, Samdani AF, Grewal H, Richmond JM, Mulcahey MJ, Gaughan JP, Antonacci MD, Betz RR. Vertebral body stapling versus bracing for patients with high-risk moderate idiopathic scoliosis. Biomed Res Int. 2015;2015:438452. https://doi.org/10.1155/2015/438452. Epub 2015 Nov 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Larson AN, Baky F, Ashraf A, Baghdadi YM, Treder V, Polly DW Jr, Yaszemski MJ. Minimum 20-year health-related quality of life and surgical rates after the treatment of adolescent idiopathic scoliosis. Spine Deform. 2019;7(3):417–27. https://doi.org/10.1016/j.jspd.2018.09.003.

    Article  PubMed  Google Scholar 

  70. Danielsson AJ, Nachemson AL. Radiologic findings and curve progression 22 years after treatment for adolescent idiopathic scoliosis: comparison of brace and surgical treatment with matching control group of straight individuals. Spine (Phila Pa 1976). 2001;26(5):516–25.

    Article  CAS  PubMed  Google Scholar 

  71. Samdani AF, Ames RJ, Kimball JS, et al. Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine (Phila Pa 1976). 2014;39:1688–93.

    Article  PubMed  Google Scholar 

  72. Guille JT, D’Andrea LP, Betz RR. Fusionless treatment of scoliosis. Orthop Clin North Am. 2007;38(4):541–5, vii. https://doi.org/10.1016/j.ocl.2007.07.003.

    Article  PubMed  Google Scholar 

  73. Hunt KJ, Braun JT, Christensen BA. The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc: analysis in an immature goat model. Spine (Phila Pa 1976). 2010;35:371–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Jayaswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A., Gupta, A., Hanasoge, V., Jayaswal, A. (2023). Nonfusion Techniques in Pediatric Scoliosis. In: Zacharia, B., Raja, S.D.C., KV, N. (eds) Paediatric Scoliosis . Springer, Singapore. https://doi.org/10.1007/978-981-99-3017-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3017-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3016-6

  • Online ISBN: 978-981-99-3017-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics