Skip to main content

Integrated Approaches for Economic Sustainability of Biofuel Industries

  • Chapter
  • First Online:
Bioenergy

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 213 Accesses

Abstract

A modern bioenergy application is a low-carbon energy source and eco-friendly in the conversion of the biomass into bioenergy. The depletion and oscillating prices of fossil fuels greenhouse effect led the researchers to reach the transition from traditional bioenergy to modern bioenergy applications. Bioenergy, especially biofuels economy, is dependent on market supply and demand. The implementation of zero-wastage liquid discharge from the bio-based industries addresses valorization of biomass effectively for the production of other high-value products. In this perspective, the integrated approaches for sustainable development and bio-economic development with the exploration of biomass for biofuel production were assessed. The integrated biorefinery aims at achieving sustainability in energy, economic and environmental aspects with the production of energy and reducing greenhouse gas emissions. This chapter focused on how the production of bioenergy and bioproducts from the biomass feedstock under biorefinery model plays an instrumental role in the development of the technological and socioeconomic aspects. Assessment of circular economy, bioeconomy under green economy with various assessment indicators led to the production of greener products and long-term sustained economic development of biofuel industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul R, Pepijn P, Arun KV, Ming Z, Rafael L (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59

    Article  Google Scholar 

  • Aristotle TU, Charles BF, Wei-Hsin C (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresource Technol 299:122585

    Article  Google Scholar 

  • Aziz NIHA, Hanafiah MM (2020) Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent. Renew Energ 145:847–857

    Article  CAS  Google Scholar 

  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 56(13):2209–2222

    Article  CAS  PubMed  Google Scholar 

  • Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sust Energ Rev 70:793–804

    Article  CAS  Google Scholar 

  • Budzianowski WM, Postawa K (2016) Total chain integration of sustainable biorefinery systems. Appl Energ 184:1432–1446

    Article  Google Scholar 

  • Cardoen D, Joshi P, Diels L, Sarma PM, Pant D (2015) Agriculture biomass in India: Part 1. Estimation and characterization. Resour Conserv Recycl 102:39–48

    Article  Google Scholar 

  • Carus M, Dammer L (2018) The circular bioeconomy—concepts, opportunities, and 501 limitations. Ind Biotechnol 14:83–91

    Article  Google Scholar 

  • Chandra R, Rohit MV, Swamy YV, Venkata Mohan S (2014) Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresour Technol 165:279–287

    Article  CAS  PubMed  Google Scholar 

  • Cheali P, Posada JA, Gernaey KV, Sin G (2015) Upgrading of lignocellulosic biorefinery to value-added chemicals: sustainability and economics of bioethanol-derivatives. Biomass Bioenerg 75:282–300

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Convers Manage 51(7):1412–1421

    Article  CAS  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Jua JC, Ling TC et al (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  PubMed  Google Scholar 

  • Chiesa S, Gnansounou E (2011) Protein extraction from biomass in a bioethanol refinery—possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour Technol 102:427–436

    Article  CAS  PubMed  Google Scholar 

  • Chozhavendhan S, Praveen Kumar R, Sivagami U, Gomathi R, Vinoth Arulraj J, Jayakumar M (2015) Glycerol as a promising substrate for the microbial production of ethanol. Asian J Microbiol Biotech Env Sc 17:79–83

    Google Scholar 

  • Chozhavendhan S, Praveen Kumar R, Kirubalini G, Jayakumar M (2016a) Bio-conversion of glycerol into commercial production of 1, 3 propanediol—a review. J Environ Biol 37:1539–1543

    Google Scholar 

  • Chozhavendhan S, Praveen Kumar R, Bharathiraja B, Jayakumar M (2016b) Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels 10(3):309–314

    Google Scholar 

  • Chozhavendhan S, Praveen Kumar R, Elavazhagan S, Barathiraja B, Jayakumar M, Sunita JV (2018) Utilization of crude glycerol from biodiesel industry for the production of value-added bioproducts, Chap. 4. In: Waste to wealth, energy, environment, and sustainability, pp 65–82

    Google Scholar 

  • Chozhavendhan S, Karthiga Devi G, Bharathiraja B, Praveen Kumar R, Elavazhagan S (2019) Assessment of crude glycerol utilization for sustainable development of biorefineries, Chap. 9. In: Refining biomass residues for sustainable energy and bioproducts, pp 195–212

    Google Scholar 

  • Chozhavendhan S, Rajamehala M, Karthigadevi G, Praveenkumar R, Bharathiraja B (2020) A review on feedstock, pretreatment methods, influencing factors, production and purification processes of bio-hydrogen production. Case Stud Chem Environ Eng 2:100038

    Article  Google Scholar 

  • Chozhavendhan S, Rajamehala M, Karthigadevi G, Praveenkumar R, Bharathiraja B, Jayakumar M (2021) Application of nanotechnology for the sustainable development of algal biofuel industries, Chap. 19. In: Nanomaterials: application in biofuels and bioenergy production systems, pp 401–410

    Google Scholar 

  • Cooper A, Mukonza C, Fisher E, Mulugetta Y, Gebreeyesus M, Onuoha M (2019) Mapping academic literature on governing inclusive green growth in Africa: geographical biases and topical gaps. Sustainability 12:1956

    Article  Google Scholar 

  • Dahiya S, Kumar AN, Shanthi Sravan J, Chatterjee S, Sarkar O, Mohan SV (2018) Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour Technol 248:2–12

    Article  CAS  PubMed  Google Scholar 

  • D’Amato D, Droste N, Allen B, Kettunen M, Lähtinen K, Korhonen J, Leskinen P et al (2017) Green, circular, bio economy: a comparative analysis of 430 sustainability avenues. J Clean Prod 168:716–734

    Article  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energ Convers Manage 52:163–170

    Article  Google Scholar 

  • Devi MP, Swamy Y, Venkata Mohan S (2013) Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour Technol 142:278–286

    Article  Google Scholar 

  • Diaz-Chavez R (2011) Assessing biofuels: aiming for sustainable development or complying with the market? Energ Policy 39:5763–5769

    Article  Google Scholar 

  • EC. A. (2018) Clean planet for all: a European long-term strategic vision for a prosperous, modern, competitive and climate, November

    Google Scholar 

  • Edouard M, Donatien N (2018) Biomass resources assessment and bioenergy generation for a clean and sustainable development in Cameroon. Biomass Bioenerg 118:16–23

    Article  Google Scholar 

  • European Parliament and Council (2018) Regulation (EU) 2018/of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU), pp 1–25

    Google Scholar 

  • Faba L, Diaz E, Ordonez S (2015) Recent developments on the catalytic technologies for the transformation of biomass into biofuels: a patent survey. Renew Sustain Energ Rev 51:273–287

    Article  CAS  Google Scholar 

  • Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Mahari WAW, Lee XY, Han CS, Vo DVN, Van Le Q (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J 389:124401

    Article  CAS  Google Scholar 

  • Georgeson L, Maslin M, Poessinouw M (2017) The global green economy: a review of concepts, definitions, measurement methodologies and their interactions. Geo Geogr Environ 4:00036

    Google Scholar 

  • Giampietro M (2019) On the circular bioeconomy and decoupling: implications for sustainable growth. Ecol Econ 162:143–156

    Article  Google Scholar 

  • Hasenheit M, Gerdes H, Kiresiewa Z, Beekman V (2016) Summary report on the social, economic and environmental impacts of the bioeconomy. Promoting stakeholder engagement and public awareness for a participative governance of the European bioeconomy

    Google Scholar 

  • Hazeena SH, Salini CN, Sindhu R, Pandey A, Binod P (2019) Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol. Bioresour Technol 278:145–149

    Article  CAS  PubMed  Google Scholar 

  • Hemalatha M, Sarkar O, Venkata Mohan S (2019) Self-sustained Azolla-Biorefinery platform for valorization of various biobased products with circular-cascading design strategy. Chem Eng J 373:1042–1053

    Article  CAS  Google Scholar 

  • Hilbert J (2015) Socio-economic impacts on bioenergy production. INTA 2015, 2017. Available at: https://inta.gob.ar/sites/default/files/script-tmp-inta-_impactos_socioeconomicos-en-produccion-de-bioen.pdf

  • IEA (International Energy Agency) (2014) Bio-based chemicals. Value added products from biorefineries. IEA Bioenergy Task 42 Biorefining. IEA, Paris

    Google Scholar 

  • Ingle K, Vitkin E, Robin A, Yakhini Z, Mishori D, Golberg A (2018) Macroalgae biorefinery from Kappaphycus alvarezii: conversion modeling and performance prediction for India and Philippines as examples. Bioenerg Res 11(1):22–32

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefinery. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  PubMed  Google Scholar 

  • Karthiga Devi G, Chozhavendhan S, Bharathiraja B (2019a) Thermochemical conversion: bio-oil and syngas production, Chap. 9. In: Prospects of renewable bioprocessing in future energy systems, biofuel and biorefinery technologies, pp 251–267

    Google Scholar 

  • Karthiga Devi G, Chozhavendhan S, Jayamuthunagai J, Bharathiraja B, Praveenkumar R (2019b) Conversion of biomass to methanol and ethanol, Chap. 4. In: Horizons in bioprocess engineering, pp 61–73

    Google Scholar 

  • Karthiga Devi G, Vignesh K, Chozhavendhan S (2019c) Effective utilization of sugarcane trash for energy production, Chap. 12. In: Refining biomass residues for sustainable energy and bioproducts, pp 259–272

    Google Scholar 

  • Khalil M, Berawi MA, Heryanto R, Rizalie A (2019) Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renew Sust Energ Rev 105:323–331

    Article  Google Scholar 

  • Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: an analysis of definitions. Resour Conserv Recycl 127:221–232

    Article  Google Scholar 

  • Ledda C, Andrea S, Barbara S, Mara R, Francisco G, Acien F, Fabrizio A (2016) Integration of microalgae production with anaerobic digestion of dairy cattle manure: an overall mass and energy balance of the process. J Clean Prod 112:103–112

    Article  CAS  Google Scholar 

  • Liew WH, Hassim MH, Ng DKS (2014) Review of evolution, technology and sustainability assessments of biofuel production. J Clean Prod 71:11–29

    Article  CAS  Google Scholar 

  • Liu ZH, Le RK, Kosa M, Yang B, Yuan J, Ragauskas AJ (2019) Identifying and creating pathways to improve biological lignin valorization. Renew Sust Energ Rev 105:349–362

    Article  CAS  Google Scholar 

  • Loiseau E, Saikku L, Antikainen R, Droste N, Hansjurgens B, Pitkanen K et al (2016) Green economy and related concepts. J Clean Prod 139:361–371

    Article  Google Scholar 

  • Lourdes MQE, Andrea CL, Barry G (2021) Second generation biorefining in Ecuador: circular bioeconomy, zero waste technology, environment and sustainable development: the nexus. J Bioresour Bioprod. https://doi.org/10.1016/j.jobab.2021.01.004

    Article  Google Scholar 

  • Luguel C (2011) Joint European Biorefinery Vision for 2030. Star-COLIBRI

    Google Scholar 

  • Ma J, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energ Chem 36:74–86

    Article  Google Scholar 

  • Mahmoud A, Shuhaimi M (2013) Systematic methodology for optimal enterprise network 459 design between bio-refinery and petroleum refinery for the production of transportation 460 fuels. Energy 59:224–232

    Article  CAS  Google Scholar 

  • Mai-Moulin T, Hoefnagels R, Grundmann R, Junginger R (2021) Effective sustainability criteria for bioenergy: towards the implementation of the European renewable directive II. Renew Sust Energ Rev 138:110645

    Article  Google Scholar 

  • Mal R, Prasad R, Vijay VK (2016) Multi-functionality clean biomass cookstove for off-grid areas. Process Saf Environ Prot 104:85–94

    Article  CAS  Google Scholar 

  • McLea L, Ball MEE, Kilpatrick D, Elliott C (2011) The effect of glycerol inclusion on broiler performance and nutrient digestibility. Br Poult Sci 52:368–375

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Roy M, Mohanty K (2019) Microalgal bioenergy production under zero-waste biorefinery approach: recent advances and future perspectives. Bioresour Technol 292:122008

    Article  CAS  PubMed  Google Scholar 

  • Murray A, Skene K, Haynes K (2017) The circular economy: an interdisciplinary exploration of the concept and application in a global context. J Bus Ethics 140(3):369–380

    Article  Google Scholar 

  • Nagarajan D, Chang JS, Lee DJ (2020) Pretreatment of microalgal biomass for efficient biohydrogen production—recent insights and future perspectives. Bioresour Technol 302:122871

    Article  CAS  PubMed  Google Scholar 

  • Nicolae S, Jean-Francois D (2011) Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energ Policy 39:1630–1646

    Article  Google Scholar 

  • Nicolae S, Jean FD, Fabio MF, Viorel N (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34

    Article  Google Scholar 

  • Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K et al (2017) Waste biorefineries: enabling circular economies in developing countries. Bioresour Technol 241:1101–1117

    Article  CAS  PubMed  Google Scholar 

  • NREL (National Renewable Energy Laboratory (2015). What is a biorefinery? http://www.nrel.gov/biomass/biorefinery.html. Accessed 2015–12

  • Ozkurt I (2009) Qualifying of safflower and algae for energy. Energ Educ Sci Technol Part A 23:145–151

    CAS  Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73

    Article  Google Scholar 

  • Perna A, Minutillo M, Lavadera AL, Jannelli E (2018) Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications. Waste Manag 73:424–438

    Article  CAS  PubMed  Google Scholar 

  • Rama Mohan S (2016) Strategy and design of innovation policy roadmapping for a waste biorefinery. Bioresour Technol 215:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Pandey A, Larroche C, Madamwar D (2018) Algal green energy—R&D and technological perspectives for biodiesel production. Renew Sustain Energ Rev 82:2946–2969

    Article  CAS  Google Scholar 

  • Rathankumar AK, Ravindran S, Saikia K, Arvind V, Batista-Garcia RA, Folch-Mallol JL, Kumar VV (2020) Simultaneous pretreatment and saccharification process for fermentable sugars production from casuarina equisetifolia biomass using transgenic Trichoderma atroviride. J Air Waste Manag Assoc 70:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Repo A, Ahtikoski A, Liski J (2015) Cost of turning forest residue bioenergy to carbon neutral. Forest Policy Econ 57:12–21

    Article  Google Scholar 

  • Richa K, Ashutosh V, Har MS, Vinayak VP, Tyagi VV, Yadav BC, Veeramuthu A, Singh DP (2020) Assessment of Indian bioenergy policy for sustainable environment and its impact for rural India: strategic implementation and challenges. Environ Technol Innov 20:101078

    Article  Google Scholar 

  • Rincon L, Puri M, Kojakovic A, Maltsoglou I (2019) The contribution of sustainable bioenergy to renewable electricity generation in Turkey: evidence based policy from an integrated energy and agriculture approach. Energ Policy 130:69–88

    Article  Google Scholar 

  • Rosales-Calderon O, Arante V (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels 12:1–58

    Article  CAS  Google Scholar 

  • RSB (2014) Roundtable on Sustainable Biomaterials (RSB). http://rsb.org/

  • Sauvee L, Viaggi D (2016) Biorefineries in the bio-based economy: opportunities and challenges for economic research. Bio-Based Appl Econ 5:1–4

    Google Scholar 

  • Shariat Panahi HK, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabae M (2020) Conversion of residues from agro-food industry into bioethanol in Iran: an undervalued biofuel additive to phase out MTBE in gasoline. Renew Energ 145:699–710

    Article  Google Scholar 

  • Shikinaka K, Nakamura M, Navarro RR, Otsuka Y (2020) Functional materials from plant biomass obtained by simultaneous enzymatic saccharification and communication. Trends Glycosci Glycotechnol 32:63–76

    Article  Google Scholar 

  • Stegmann P, Londo M, Junginger M (2020) The circular bioeconomy: its elements and role in European bioeconomy clusters. Resour Conserv Recycl X 6:100029

    Google Scholar 

  • Szekacs A (2017) Environmental and ecological aspects in the overall assessment of bioeconomy. J Agric Environ Ethics 30:153–170

    Article  Google Scholar 

  • Taelman SE, Meester SD, Dijk WV, Silva VD, Dewulf J (2015) Environmental sustainability analysis of a protein-rich live stock feed ingredient in The Netherlands: micro-algae production versus soy bean import. Resour Conserv Recycl 101:61–72

    Article  Google Scholar 

  • Taylor G (2008) Biofuels and the biorefinery concept. Energ Policy 36:4406–4409

    Article  Google Scholar 

  • Temmes A, Peck P (2019) Do forest biorefineries fit with working principles of a circular bioeconomy? A case of Finnish and Swedish initiatives. In: Forest policy and economics, pp 101896–101896

    Google Scholar 

  • Tuazon D, Corder G, McLellan B (2013) Sustainable development: a review of theoretical contributions. Int J Sustain Future Human Sec 1(1):40–48

    Google Scholar 

  • Ubando AT, Felix CB, Chen W-H (2020) Biorefineries in circular bioeconomy: A 499 comprehensive review. Bioresour Technol 299:122585

    Article  CAS  PubMed  Google Scholar 

  • Vaez E, Zilouei H (2020) Towards the development of biofuel production from paper mill effluent. Renew Energ 146:1408–1415

    Article  CAS  Google Scholar 

  • Van Dael M, Márquez N, Reumerman P, Pelkmans L, Kuppens T, Van Passel S (2014) Development and techno-economic evaluation of a biorefinery based on biomass (waste) streams–case study in the Netherlands. Biofuels Bioprod Biorefin 8(5):635–644

    Google Scholar 

  • Venkata Mohan S, Nikhil GN, Chiranjeevi P, Nagendranatha Reddy C, Rohit MV, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12

    Article  CAS  PubMed  Google Scholar 

  • Wirth R, Lakatos G, Bojti T, Maroti G, Bagi Z, Rakhely G et al (2018) Anaerobic gaseous biofuel production using microalgal biomass—a review. Anaerobe 52:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Jiang M, Huang D, Zeng G, Lai C, Qin L et al (2018) Advanced photocatalytic Fenton-like process over biomimetic hemin-Bi2WO6 with enhanced pH. J Taiwan Inst Chem Eng 93:184–192

    Article  CAS  Google Scholar 

  • Zhang TY, Hong YH, Yin HW, Lin LZ, Xue QX, Xiao XW et al (2016) Promising solutions to solve the bottle-necks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew Sustain Energ Rev 60:602–1614

    Google Scholar 

  • Zhao XB, Liu DH (2019) Multi-products co-production improves the economic feasibility of cellulosic ethanol: a case of Formiline pretreatment-based biorefining. Appl Energ 250:229–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chozhavendhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chozhavendhan, S., Karthigadevi, G., Praveen Kumar, R., Karthiga, D., Magesh, A. (2023). Integrated Approaches for Economic Sustainability of Biofuel Industries. In: Ramanujam, P.K., Parameswaran, B., Bharathiraja, B., Magesh, A. (eds) Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-3002-9_4

Download citation

Publish with us

Policies and ethics