Skip to main content

Optic Nerve Neoplasm

  • Chapter
  • First Online:
Orbital Apex and Periorbital Skull Base Diseases
  • 187 Accesses

Abstract

This chapter will summarize different primary optic nerve neoplasms with the main focus on the more commonly encountered optic glioma and optic nerve sheath meningioma. Based on the published literature, this chapter will cover epidemiology, clinical presentations, histopathology, imaging characteristics, different treatment modalities, and management strategies. Up-to-date diagnostic and therapeutic options will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutton JJ. Gliomas of the anterior visual pathway. Surv Ophthalmol. 1994;38:427–52.

    Article  CAS  PubMed  Google Scholar 

  2. Miller NR. Optic gliomas: past, present, future. J Neuroophthalmol. 2016;36:460–73.

    Article  PubMed  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  4. Parsa CF, Givrad S. Juvenile pilocytic astrocytomas do not undergo spontaneous malignant transformation: grounds for designation as hamartomas. Br J Ophthalmol. 2008;92:40–6.

    Article  CAS  PubMed  Google Scholar 

  5. Parsa CF. Why optic gliomas should be called harmatomas. Ophthal Plast Reconstr Surg. 2010;26(6):497.

    Article  PubMed  Google Scholar 

  6. Cutarelli PE, Roessmann UR, Miller RH, et al. Immunohistochemical properties of human optic nerve glioma. Invest Ophthalmol Vis Sci. 1991;32:2521–4.

    CAS  PubMed  Google Scholar 

  7. Miller NR. Optic pathway gliomas are tumors! Ophthal Plast Reconstr Surg. 2008;24:433.

    Article  PubMed  Google Scholar 

  8. Liu GT, Katowitz JA, Rorke-Adams LB, Fisher MJ. Optic pathway gliomas neoplasms, not hamartomas. JAMA Ophthalmol. 2013;131:646–50.

    Article  PubMed  Google Scholar 

  9. Bowers DC, Gargan L, Kapur P, et al. Study of the MIB-1 labeling index as a predictor of tumor progression in pilocytic astrocytomas in children and adolescents. J Clin Oncol. 2003;21:2968–73.

    Article  PubMed  Google Scholar 

  10. Nair AG, Pathak RS, Iyer VR, Gandhi RA. Optic nerve glioma: an update. Int Ophthalmol. 2014;34:999–1005.

    Article  PubMed  Google Scholar 

  11. Rush JA, Younge BR, Campbell RJ, et al. Optic glioma: long-term follow-up of 85 histologically verified cases. Ophthalmology. 1982;89:1213–9.

    Article  CAS  PubMed  Google Scholar 

  12. Binning MJ, Liu JK, Kestle JR, Brockmeyer DL, Walker ML. Optic pathway gliomas: a review. Neurosurg Focus. 2007;23:1–8.

    Article  Google Scholar 

  13. Miller NR, Iliff WJ, Green WR. Evaluation and management of gliomas of the anterior visual pathways. Brain. 1974;97:743–54.

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez FJ, Lim KS, Bowers D, Eberhart CG. Pathological and molecular advances in pediatric low-grade astrocytoma. Annu Rev Pathol. 2013;8:361–79.

    Article  CAS  PubMed  Google Scholar 

  15. Houshmandi SS, Gutmann DH. All in the family: using inherited cancer syndromes to understand deregulated cell signaling in brain tumors. J Cell Biochem. 2007;102:811–9.

    Article  CAS  PubMed  Google Scholar 

  16. Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Piwnica-Worms D, Gutmann DH, Rubin JB. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 2011;70:5717–27.

    Article  Google Scholar 

  17. Helfferich J, Nijmeijer R, Brouwer OF, et al. Neurofibromatosis type 1 associated low grade gliomas: a comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol. 2016;104:30–41.

    Article  PubMed  Google Scholar 

  18. Lewis RA, Gerson LP, Axelson KA, Riccardi VM, Whitford RP. Von Recklinghausen neurofibromatosis: II. Incidence of optic gliomata. Ophthalmology. 1984;91:929–35.

    Article  CAS  PubMed  Google Scholar 

  19. Dossetor FM, Landau K, Hoyt WF. Optic disk glioma in neurofibromatosis type 2. Am J Ophthalmol. 1989;108(5):602–3.

    Article  CAS  PubMed  Google Scholar 

  20. Di Mario FJ, Ramsby G, Greenstein R. Neurofibromatosis type I: resonance imaging findings. J Child Neurol. 1993;8:32–9.

    Article  Google Scholar 

  21. Miller NR. Primary tumours of the optic nerve and its sheath. Eye. 2004;18:1026–37.

    Article  CAS  PubMed  Google Scholar 

  22. Prada CE, Hufnagel RB, Hummel TR, Lovell AM, Hopkin RJ, Saal HM, Schorry EK. The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr. 2015;167:851–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Balcer LJ, Liu GT, Heller G, et al. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: relation to tumor location by magnetic resonance imaging. Am J Ophthalmol. 2001;131:442–5.

    Article  CAS  PubMed  Google Scholar 

  24. Thiagalingam S, Flaherty M, Billson F, North K. Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology. 2004;111:568–77.

    Article  PubMed  Google Scholar 

  25. Czyzyk E, Jozwiak S, Roszkowski M, Schwartz RA. Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol. 2003;18:471–8.

    Article  PubMed  Google Scholar 

  26. Chutorian AM, Schwartz JF, Evans RA, Carter S. Optic gliomas in children. Neurology. 1964;14:83–95.

    Article  CAS  PubMed  Google Scholar 

  27. Sharma A, Mohan K, Saini JS. Haemorrhagic changes in pilocytic astrocytoma of the optic nerve. Orbit. 1990;9:29–33.

    Article  Google Scholar 

  28. Kozak I, Elkhamary SM, Bosley TM. Central retinal vein occlusion in a childhood optic nerve tumour. Neuroophthalmology. 2016;40:35–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tow SL, Chandela S, Miller NR, et al. Long-term prognosis in children with gliomas of the anterior visual pathway. Pediatr Neurol. 2003;28:262–70.

    Article  PubMed  Google Scholar 

  30. Roh S, Mawn LA, Hedges TR. Juvenile pilocytic astrocytoma masquerading as amblyopia. Am J Ophthalmol. 1997;123:692–4.

    Article  CAS  PubMed  Google Scholar 

  31. Maitland CG, Abiko S, Hoyt WF, Wilson CB, Okamura T. Chiasmal apoplexy: report of four cases. J Neurosurg. 1982;56:118–22.

    Article  CAS  PubMed  Google Scholar 

  32. Hill JD, Rhee MS, Edwards JR, Hagen MC, Fulkerson DH. Spontaneous intraventricular hemorrhage from low-grade optic glioma: case report and review of the literature. Childs Nerv Syst. 2012;28:327–30.

    Article  PubMed  Google Scholar 

  33. Toledano H, Muhsinoglu O, Luckman J, Goldenberg-Cohen N, Michowiz S. Acquired nystagmus as the initial presenting sign of chiasmal glioma in young children. Eur J Paediatr Neurol. 2015;19(6):694–700.

    Article  PubMed  Google Scholar 

  34. Estrada M, Kelly JP, Wright J, Phillips JO, Weiss A. Visual function, brain imaging, and physiological factors in children with asymmetric nystagmus due to chiasmal gliomas. Pediatr Neurol. 2019;97:30–7.

    Article  PubMed  Google Scholar 

  35. Schulman JA, Shults WT, Jones JM Jr. Monocular vertical nystagmus as an initial sign of chiasmal glioma. Am J Ophthalmol. 1979;87(1):87–90.

    Article  CAS  PubMed  Google Scholar 

  36. Lavery MA, O’Neill JF, Chu FC, Martyn LJ. Acquired nystagmus in early childhood: a presenting sign of intracranial tumor. Ophthalmology. 1984;91(5):425–53.

    Article  CAS  PubMed  Google Scholar 

  37. Brodsky MC, Keating GE. Chiasmal glioma in spasmus nutans: a cautionary note. J Neuroophthalmol. 2014;34:274–5.

    Article  PubMed  Google Scholar 

  38. Campagna M, Opocher E, Viscardi E, Calderone M, Severino SM, Cermakova I, Perilongo G. Optic pathway glioma: long term visual outcome in children without neurofibromatosis type-1. Pediatr Blood Cancer. 2010;55:1083–8.

    Article  PubMed  Google Scholar 

  39. Kelly JP, Weiss AH. Detection of tumor progression in optic pathway glioma with and without neurofibromatosis type 1. Neuro Oncol. 2013;15:1560–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Avery RA, Liu GT, Fisher MJ, Quinn GE, Belasco JB, Phillips PC, Maguire MG, Balcer LJ. Retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2011;151:542–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Invest Ophthalmol Vis Sci. 2014;55:1402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. North K, Cochineas C, Tang E, Fagan E. Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatr Neurol. 1994;10(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  43. Ng YT, North KN. Visual-evoked potentials in the assessment of optic gliomas. Pediatr Neurol. 2001;24(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  44. Spicer GJ, Kazim M, Glass LR, et al. Accuracy of MRI in defining tumor-free margin in optic nerve glioma surgery. Ophthal Plast Reconstr Surg. 2013;29:277–80.

    Article  PubMed  Google Scholar 

  45. Stern J, Jakobiec FA, Housepian EM. The architecture of optic nerve gliomas with and without neurofibromatosis. Arch Ophthalmol. 1980;98:505–11.

    Article  CAS  PubMed  Google Scholar 

  46. Yeung SN, Heran MK, Smith A, White VA, Rootman J. Perineural gliomatosis associated with isolated optic nerve gliomas. Br J Ophthalmol. 2009;93:839–41.

    Article  CAS  PubMed  Google Scholar 

  47. Brodsky MC. The “pseudo-CSF” signal of orbital optic glioma on magnetic resonance imaging: a signature of neurofibromatosis. Surv Ophthalmol. 1993;38:213–8.

    Article  CAS  PubMed  Google Scholar 

  48. Imes RK, Hoyt WF. Magnetic resonance imaging signs of optic nerve gliomas in neurofibromatosis 1. Am J Ophthalmol. 1991;111:729–34.

    Article  CAS  PubMed  Google Scholar 

  49. Levin MH, Armstrong GT, Broad JH, et al. Risk of optic pathway glioma in children with neurofibromatosis type 1 and optic nerve tortuosity or nerve sheath thickening. Br J Ophthalmol. 2016;100:510–4.

    Article  PubMed  Google Scholar 

  50. Ge M, Li S, Wang L, et al. The role of diffusion tensor tractography in the surgical treatment of pediatric optic chiasmatic gliomas. J Neurooncol. 2015;122:357–66.

    Article  PubMed  Google Scholar 

  51. Revere KE, Katowitz WR, Katowitz JA, et al. Childhood optic nerve glioma: vision loss due to biopsy. Ophthal Plast Reconstr Surg. 2017;33:S107–9.

    Article  PubMed  Google Scholar 

  52. Zimmerman LE. Arachnoid hyperplasia in optic nerve glioma. Br J Ophthalmol. 1980;64:638–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cooling RJ, Wright JE. Arachnoid hyperplasia in optic nerve glioma: confusion with orbital meningioma. Br J Ophthalmol. 1979;63:596–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61:189–98.

    Article  CAS  PubMed  Google Scholar 

  55. Kelly JP, Weiss AH. Comparison of pattern visual-evoked potentials to perimetry in the detection of visual loss in children with optic pathway gliomas. J AAPOS. 2006;10:298–306.

    Article  PubMed  Google Scholar 

  56. Chang BC, Mirabella G, Yagev R, et al. Screening and diagnosis of optic pathway gliomas in children with neurofibromatosis type 1 by using sweep visual evoked potentials. Invest Ophthalmol Vis Sci. 2007;48:2895–902.

    Article  PubMed  Google Scholar 

  57. Avery RA, Cnaan A, Schuman JS, et al. Longitudinal change of circumpapillary retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2015;160:944–952.e941.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fard MA, Fakhree S, Eshraghi B. Correlation of optical coherence tomography parameters with clinical and radiological progression in patients with symptomatic optic pathway gliomas. Graefes Arch Clin Exp Ophthalmol. 2013;251:2429–36.

    Article  PubMed  Google Scholar 

  59. Avery RA, Cnaan A, Schuman JS, Chen CL, Glaug NC, Packer RJ, Quinn GE, Ishikawa H. Reproducibility of circumpapillary retinal nerve fiber layer measurements using handheld optical coherence tomography in sedated children. Am J Ophthalmol. 2014;158:780–787.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Listernick R, Louis DN, Packer RJ, Gutmann DH. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol. 1997;41:143–9.

    Article  CAS  PubMed  Google Scholar 

  61. Blanchard G, Lafforgue MP, Lion-Francois L, et al. Systematic MRI in NF1 children under six years of age for the diagnosis of optic pathway gliomas. Study and outcome of a French cohort. Eur J Paediatr Neurol. 2016;20:275–81.

    Article  PubMed  Google Scholar 

  62. Havidich JE, Beach M, Dierdorf SF, et al. Preterm versus term children: analysis of sedation/anesthesia adverse events and longitudinal risk. Pediatrics. 2016;137:e20150463.

    Article  PubMed  Google Scholar 

  63. de Blank PMK, Fisher MJ, Liu GT, et al. Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol. 2017;37(Suppl 1):S23–32.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fisher MJ, Loguidice M, Gutmann DH, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012;14:790–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Parsa CF, Hoyt WF, Lesser RL, et al. Spontaneous regression of optic gliomas. Thirteen cases documented by serial neuroimaging. Arch Ophthalmol. 2001;119:516–29.

    Article  CAS  PubMed  Google Scholar 

  66. Liu GT, Lessell S. Spontaneous visual improvement in chiasmal gliomas. Am J Ophthalmol. 1992;114:193–201.

    Article  CAS  PubMed  Google Scholar 

  67. Perilongo G, Moras P, Carollo C, Battistella A, Clementi M, Laverda A, Murgia A. Spontaneous partial regression of low-grade glioma in children with neurofibromatosis-1: a real possibility. J Child Neurol. 1999;14:352–6.

    Article  CAS  PubMed  Google Scholar 

  68. Piccirilli M, Lenzi J, Delfinis C, Trasimeni G, Salvati M, Raco A. Spontaneous regression of optic pathways gliomas in three patients with neurofibromatosis type I and critical review of the literature. Childs Nerv Syst. 2006;22:1332–7.

    Article  PubMed  Google Scholar 

  69. Gayre GS, Scott IU, Feuer W, et al. Long-term visual outcome in patients with anterior visual pathway glioma. J Neuroophthalmol. 2001;21:1–7.

    Article  CAS  PubMed  Google Scholar 

  70. Aquilina K, Daniels DJ, Spoudeas H, et al. Optic pathway glioma in children: does visual deficit correlate with radiology in focal exophytic lesions? Childs Nerv Syst. 2015;31:2041–9.

    Article  PubMed  Google Scholar 

  71. Wolter JR. Large optic nerve glioma removed by the transconjunctival approach. J Pediatr Ophthalmol. 1973;10:142–6.

    Google Scholar 

  72. Althekair FY. Debulking optic nerve gliomas for disfiguring proptosis: a globe-sparing approach by lateral orbitotomy alone. Presented as a poster at the 42nd Annual Meeting of the North American Neuro-Ophthalmology Society, Tucson, AZ, February 28, 2016.

    Google Scholar 

  73. Spicer GJ, Kazim M, Glass LR, Harris GJ, Miller NR, Rootman J, Sullivan TJ. Accuracy of MRI in defining tumor-free margin in optic nerve glioma surgery. Ophthal Plast Reconstr Surg. 2013;29:277–80.

    Article  PubMed  Google Scholar 

  74. Vanderveen DK, Nihalani BR, Barron P, Anderson RL. Optic nerve sheath fenestration for an isolated optic nerve glioma. J AAPOS. 2009;13:88–90.

    Article  PubMed  Google Scholar 

  75. Chen A, Yoon MK, Haugh S, et al. Surgical management of an optic nerve glioma with perineural arachnoidal gliomatosis growth pattern. J Neuroophthalmol. 2013;33:51–3.

    Article  PubMed  Google Scholar 

  76. Farazdaghi MK, Katowitz WR, Avery RA. Current treatment of optic nerve gliomas. Curr Opin Ophthalmol. 2019;30:356–63.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Goodden J, Pizer B, Pettorini B, Williams D, Blair J, Didi M, Thorp N, Mallucci C. The role of surgery in optic pathway/hypothalamic gliomas in children. J Neurosurg Pediatr. 2014;13:1–12.

    Article  PubMed  Google Scholar 

  78. Marwaha G, Macklis R, Singh AD. Radiation therapy: orbital tumors. Dev Ophthalmol. 2013;52:94–101.

    Article  PubMed  Google Scholar 

  79. El-Shehaby AM, Reda WA, Abdel Karim KM, et al. Single-session Gamma Knife radiosurgery for optic pathway/hypothalamic gliomas. J Neurosurg. 2016;125(Suppl 1):50–7.

    Article  PubMed  Google Scholar 

  80. Taveras JM, Mount LA, Wood EH. The value of radiation therapy in the management of glioma of the optic nerves and chiasm. Radiology. 1956;66:518–28.

    Article  CAS  PubMed  Google Scholar 

  81. Pierce SM, Barnes PD, Loeffler JS, et al. Definitive radiation therapy in the management of symptomatic patients with optic glioma. Survival and long term effects. Cancer. 1990;65:45–52.

    Article  CAS  PubMed  Google Scholar 

  82. Grill J, Couanet D, Cappelli C, et al. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann Neurol. 1999;45:393–6.

    Article  CAS  PubMed  Google Scholar 

  83. Lafay-Cousin L, Sung L, Carret AS, et al. Carboplatin hypersensitivity reaction in pediatric patients with low-grade glioma: a Canadian Pediatric Brain Tumor Consortium experience. Cancer. 2008;112:892–9.

    Article  CAS  PubMed  Google Scholar 

  84. Yu DY, Dahl GV, Shames RS, Fisher PG. Weekly dosing of carboplatin increases risk of allergy in children. J Pediatr Hematol Oncol. 2001;23:349–52.

    Article  CAS  PubMed  Google Scholar 

  85. Bouffet E, Jakacki R, Goldman S, et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J Clin Oncol. 2012;30:1358–63.

    Article  CAS  PubMed  Google Scholar 

  86. Lassaletta A, Scheinemann K, Zelcer SM, et al. Phase II weekly vinblastine for chemotherapy-naive children with progressive low-grade glioma: a Canadian Pediatric Brain Tumor Consortium Study. J Clin Oncol. 2016;34:3537–43.

    Article  CAS  PubMed  Google Scholar 

  87. Cappellano AM, Petrilli AS, da Silva NS, et al. Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J Neurooncol. 2015;121:405–12.

    Article  CAS  PubMed  Google Scholar 

  88. Gururangan S, Fisher MJ, Allen JC, et al. Temozolomide in children with progressive low-grade glioma. Neuro Oncol. 2007;9:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ater J, Holmes E, Zhou T, et al. Abstracts from the thirteenth international symposium on pediatric neuro-oncology: results of COG protocol A9952-a randomized phase 3 study of two chemotherapy regimens for incompletely resected low-grade glioma in young children. Neuro Oncol. 2008;10:451–2.

    Google Scholar 

  90. Leone G, Mele L, Pulsoni A, et al. The incidence of secondary leukemias. Haematologica. 1999;84:937–45.

    CAS  PubMed  Google Scholar 

  91. Maris JM, Wiersma SR, Mahgoub N, et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer. 1997;79:1438–46.

    Article  CAS  PubMed  Google Scholar 

  92. Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994;70:969–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shannon KM, O’Connell P, Martin GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330:597–601.

    Article  CAS  PubMed  Google Scholar 

  94. Falzon K, Drimtzias E, Picton S, Simmons I. Visual outcomes after chemotherapy for optic pathway glioma in children with and without neurofibromatosis type 1: results of the International Society of Paediatric Oncology (SIOP) Low-Grade Glioma 2004 trial UK cohort. Br J Ophthalmol. 2018;102(10):1367–71.

    Article  PubMed  Google Scholar 

  95. Hamideh D, Hoehn ME, Harreld J, Klimo PD, Gajjar Am Qaddoumi I. Isolated optic nerve glioma in children with and without neurogibromatosis: retrospective characterization and analysis of outcomes. J Child Neurol. 2018;33(6):375–82.

    Article  PubMed  Google Scholar 

  96. Kinori M, Armarnik S, Listernick R, Charrow J, Zeid JL. Neurofibromatosis type 1-associated optic pathway glioma in children: a follow-up of 10 years or more. Am J Ophthalmol. 2021;221:91–6.

    Article  PubMed  Google Scholar 

  97. Imes RK, Hoyt WF. Childhood chiasmal gliomas: update on the fate of patients in the 1969 San Francisco Study. Br J Ophthalmol. 1986;70:179–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wilson WB, Feinsod M, Hoyt WF, Nielsen SL. Malignant evolution of childhood chiasmal pilocytic astrocytoma. Neurology. 1976;26:322–5.

    Article  CAS  PubMed  Google Scholar 

  99. Nishio S, Takeshita I, Fukui M, Yamashita M, Tateishi J. Anaplastic evolution of childhood optico-hypothalamic pilocytic astrocytoma: report of an autopsy case. Clin Neuropathol. 1988;7:254–8.

    CAS  PubMed  Google Scholar 

  100. Dodgshun AJ, Elder JE, Hansford JR, Sullivan MJ. Long-term visual outcome after chemotherapy for optic pathway glioma in children: site and age are strongly predictive. Cancer. 2015;121:4190–6.

    Article  PubMed  Google Scholar 

  101. Gan HW, Phipps K, Aquilina K, Gaze MN, Hayward R, Spoudeas HA. Neuroendocrine morbidity after pediatric opticgli omas: a longitudinal analysis of 166 children over 20 years. J Clin Endocrinol Metab. 2015;100:3787–99.

    Article  CAS  PubMed  Google Scholar 

  102. El Beltagy MA, Reda M, Enayet A, Zaghloul MS, Awad M, Zekri W, Taha H, El-Khateeb N. Treatment and outcome in 65 children with optic pathway gliomas. World Neurosurg. 2016;89:525–34.

    Article  PubMed  Google Scholar 

  103. Packer RJ, Vezina G. New treatment modalities in NF-related neuroglial tumors. Childs Nerv Syst. 2020;36:2377–84.

    Article  PubMed  Google Scholar 

  104. Machein M, Plate K, Machein M, Plate K. VEGF in brain tumors. J Neurooncol. 2000;50:109–20.

    Article  CAS  PubMed  Google Scholar 

  105. Avery RA, Hwang EI, Jakacki RI, Packer RJ. Marked Recovery of vision in children with optic pathway gliomas treated with bevacizumab. Arch Ophthalmol JAMA Ophthalmol. 2014;132(1):111–4.

    Article  Google Scholar 

  106. Gorsi HS, Khanna PC, Tumblin M, et al. Single-agent bevacizumab in the treatment of recurrent or refractory pediatric low-grade glioma: a single institutional experience. Pediatr Blood Cancer. 2018;65:e27234.

    Article  PubMed  Google Scholar 

  107. Gururangan S, Fangusaro J, Poussaint TY, et al. Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas – a pediatric brain tumor consortium study. Neuro Oncol. 2014;16:310–7.

    Article  CAS  PubMed  Google Scholar 

  108. Zhukova N, Rajagopal R, Lam A, et al. Use of bevacizumab as a single agent or in adjunct with traditional chemotherapy regimens in children with unresectable or progressive low-grade glioma. Cancer Med. 2019;8:40–50.

    Article  CAS  PubMed  Google Scholar 

  109. Kalra M, Heath JA, Kellie SJ, et al. Confirmation of bevacizumab activity, and maintenance of efficacy in retreatment after subsequent relapse, in pediatric low-grade glioma. J Pediatr Hematol Oncol. 2015;37:e341–6.

    Article  CAS  PubMed  Google Scholar 

  110. Hwang EI, Jakacki RI, Fisher MJ, et al. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr Blood Cancer. 2013;60:776–82.

    Article  CAS  PubMed  Google Scholar 

  111. Falsini B, Chiaretti A, Barone G, et al. Total nerve growth factor as a visual rescue strategy in pediatric optic gliomas: a pilot study including electrophysiology. Neurorehabil Neural Repair. 2011;25:512–20.

    Article  PubMed  Google Scholar 

  112. Ullrich NJ, Prabhu SP, Reddy AT, et al. A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro Oncol. 2020;22(10):1527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wright KD, Yao X, London WB, et al. A POETIC Phase II study of continuous oral everolimus in recurrent, radiographically progressive pediatric low-grade glioma. Pediatr Blood Cancer. 2021;68(2):e28787.

    Article  CAS  PubMed  Google Scholar 

  114. Banerjee A, Jackacki R, Onar A, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor (PBTC) Study. Neuro Oncol. 2017;19(8):1135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fangusaro J, Onar-Thomas A, Young Poussaint T, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicenter, phase 2 trial. Lancet Oncol. 2019;20(7):1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pfister S, Janzarik WG, Remke M, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118:1739–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rodriguez FJ, Ligon AH, Horkayne-Szakaly I, Rushing EJ, Ligon KL, Vena N, Garcia DI, Cameron JD, Eberhart CG. BRAF duplications and MAPK pathway activation are frequent in gliomas of the optic nerve proper. J Neuropathol Exp Neurol. 2012;71:789–94.

    Article  CAS  PubMed  Google Scholar 

  118. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382(15):1430–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McCannel TA, Chmielowski B, Finn RS, et al. Bilateral subfoveal neurosensory retinal detachment associated with MEK inhibitor use for metastatic cancer. JAMA Ophthalmol. 2014;132:1005–9.

    Article  PubMed  Google Scholar 

  120. Nolan DP, Lewis S, Hariprasad SM. Retinal toxicity associated with MEK inhibitor use for metastatic cancer: a rising trend in ophthalmology. Ophthalmic Surg Lasers Imaging Retina. 2016;47:398–402.

    Article  PubMed  Google Scholar 

  121. Mendez-Martinez S, Calvo P, Ruiz-Moreno O, et al. Ocular adverse events associated with MEK inhibitors. Retina. 2019; https://doi.org/10.1097/IAE.0000000000002451.

  122. Avery RA, Trimboli-Heidler C, Kilburn LB. Separation of outer retinal layers secondary to selumetinib. J AAPOS. 2016;20:268–71.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Brosseau J-P, Liao C-P, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer. 2020;123(2):178–86.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Galvin R, Watson AL, Largaespada DA, Ratner N, Osum S, Moertel CL. Neurofibromatosis in the era of precision medicine: development of MEK inhibitors and recent successes with selumetinib. Curr Oncol Rep. 2021;23(4):45.

    Article  CAS  PubMed  Google Scholar 

  125. Spoor TC, Kennerdell JS, Martinez Z, et al. Malignant gliomas of the optic nerve pathways. Am J Ophthalmol. 1980;89:284–92.

    Article  CAS  PubMed  Google Scholar 

  126. Traber GL, Pangalu A, Neumann M, Costa J, Weller M, HunaBaron R, Landau K. Malignant optic glioma—the spectrum of disease in a case series. Graefes Arch Clin Exp Ophthalmol. 2015;253:1187–94.

    Article  PubMed  Google Scholar 

  127. Cimino PJ, Sychev Y, Gonzalez-Cuyar LF, et al. Primary gliosarcoma of the optic nerve: a unique adult optic pathway glioma. Ophthal Plast Reconstr Surg. 2017;33:e88–92.

    Article  PubMed  Google Scholar 

  128. Brodovsky S, ten Hove MW, Pinkerton RM, et al. An enhancing optic nerve lesion: malignant glioma of adulthood. Can J Ophthalmol. 1997;32:409–13.

    CAS  PubMed  Google Scholar 

  129. Taphoorn MJB, de Vries-Knoppert WAEJ, Ponssen H, et al. Malignant optic glioma in adults. Case report. J Neurosurg. 1989;70:277–9.

    Article  CAS  PubMed  Google Scholar 

  130. Woiciechowsky C, Vogel S, Meyer R, Lehmann R. Magnetic resonance imaging of a glioblastoma of the optic chiasm. J Neurosurg. 1995;83:923–5.

    Article  CAS  PubMed  Google Scholar 

  131. Nagaishi M, Sugiura Y, Takano I, et al. Clinicopathological and molecular features of malignant pathway glioma in an adult. J Clin Neurosci. 2015;22:207–9.

    Article  CAS  PubMed  Google Scholar 

  132. Rolston JD, Han SJ, Cotter JA, et al. Gangliogliomas of the optic pathway. J Clin Neurosci. 2014;21:2244–9.

    Article  PubMed  Google Scholar 

  133. Gritzman MCD, Snyckers FD, Proctor NS. Ganglioglioma of the optic nerve. A case report. S Afr Med J. 1983;63:863–5.

    CAS  PubMed  Google Scholar 

  134. Bergin DJ, Johnson TE, Spencer WH, et al. Ganglioglioma of the optic nerve. Am J Ophthalmol. 1988;105:146–9.

    Article  CAS  PubMed  Google Scholar 

  135. Sadun F, Hinton DR, Sadun AA. Rapid growth of an optic nerve ganglioglioma in a patient with neurofibromatosis 1. Ophthalmology. 1996;103:794–9.

    Article  CAS  PubMed  Google Scholar 

  136. McGrath LA, Mudhar HS, Salvi SM. Hemangioblastoma of the optic nerve. Surv Ophthalmol. 2019;64:175–84.

    Article  PubMed  Google Scholar 

  137. McLendon RE, Kros JM, Bruner J, et al. Oligodendrogliomas. In: McLendon RE, Rosenblum MK, Bigner DD, editors. Russell and Rubinstein’s pathology of tumors of the nervous system. 7th ed. London: Hodder Arnold; 2006. p. 167–86.

    Chapter  Google Scholar 

  138. Lucarini C, Tomei G, Gaini SM, et al. A case of optic nerve oligodendroglioma associated with an orbital non-Hodgkin’s lymphoma in adult. Case report. J Neurosurg Sci. 1990;34:319–21.

    CAS  PubMed  Google Scholar 

  139. Offret H, Gregoire-Cassoux N, Frau E, et al. Solitary oligodendroglioma of the optic nerve. Apropos of a case. J Fr Ophtalmol. 1995;18:158–63.

    CAS  PubMed  Google Scholar 

  140. DiLuna ML, Two AM, Levy GH, et al. Primary, non-exophitic, optic nerve germ cell tumors. J Neurooncol. 2009;95:437–43.

    Article  PubMed  Google Scholar 

  141. Wilson JT, Wald SL, Aitken PA, Mastromateo J, Vieco PT. Primary diffuse chiasmatic germinomas: differentiation from optic chiasm gliomas. Pediatr Neurosurg. 1995;23:1–5.

    Article  CAS  PubMed  Google Scholar 

  142. Iizuka H, Nojima T, Kadoya S. Germinoma of the optic nerve: case report. Noshuyo Byori. 1996;13:95–8.

    CAS  PubMed  Google Scholar 

  143. Nadkarni TD, Fattepurkar SC, Desai KI, Goel A. Intracranial optic nerve germinoma. J Clin Neurosci. 2004;11:559–61.

    Article  PubMed  Google Scholar 

  144. Dutton JJ. Optic nerve sheath meningiomas. Surv Ophthalmol. 1992;37:167–83.

    Article  CAS  PubMed  Google Scholar 

  145. Miller NR. New concepts in the diagnosis and management of optic nerve sheath meningioma. J Neuroophthalmol. 2006;26:200–8.

    Article  PubMed  Google Scholar 

  146. Shapey J, Sabin HI, Danesh-Meyer HV, et al. Diagnosis and management of optic nerve sheath meningiomas. J Clin Neurosci. 2013;20:1045–56.

    Article  CAS  PubMed  Google Scholar 

  147. Schick U, Dott U, Hassler W. Surgical management of meningiomas involving the optic nerve sheath. J Neurosurg. 2004;101:951–9.

    Article  PubMed  Google Scholar 

  148. Ortiz O, Schochet SS, Kotzan JM, Kostick D. Radiologic-pathologic correlation meningioma of the optic nerve sheath. Am J Neuroradiol. 1996;17:901–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Levin LA, Jakobiec FA. Optic nerve tumors of childhood: a decision-analytical approach to their diagnosis. Int Ophthalmol Clin. 1992;32:223–40.

    Article  CAS  PubMed  Google Scholar 

  150. Saeed P, Rootman J, Nugent RA, et al. Optic nerve sheath meningiomas. Ophthalmology. 2003;110:2019–30.

    Article  PubMed  Google Scholar 

  151. Bosch MM, Wichmann WW, Boltshauser E, et al. Optic nerve sheath meningiomas in patients with neurofibromatosis type 2. Arch Ophthalmol. 2006;124:379–85.

    Article  PubMed  Google Scholar 

  152. Germano IM, Edwards MS, Davis RL, Schiffer D. Intracranial meningiomas of the first two decades of life. J Neurosurg. 1994;80:447–53.

    Article  CAS  PubMed  Google Scholar 

  153. Douglas KA, Douglas VP, Cestari DM. Neuro-ophthalmic manifestations of the phakomatoses. Curr Opin Ophthalmol. 2019;30:434–42.

    Article  PubMed  Google Scholar 

  154. Luis EA, Scheithauer BW, Yachnis AT, et al. Meningiomas in pregnancy: a clinicopathologic study of 17 cases. Neurosurgery. 2012;71:951–61.

    Article  Google Scholar 

  155. Laviv Y, Ohla V, Kasper EM. Unique features of pregnancy-related meningiomas: lessons learned from 148 reported cases and theoretical implications of a prolactin modulated pathogenesis. Neurosurg Rev. 2018;41:95–108.

    Article  PubMed  Google Scholar 

  156. Thom M, Martinian L. Progesterone receptors are expressed with higher frequency by optic nerve sheath meningiomas. Clin Neuropathol. 2002;21:5–8.

    CAS  PubMed  Google Scholar 

  157. Sibony PA, Krauss HR, Kennerdell JS, et al. Optic nerves sheath meningiomas: clinical manifestations. Ophthalmology. 1984;91:1313–26.

    Article  CAS  PubMed  Google Scholar 

  158. Orcutt JC, Tucker WM, Mills RP, Smith CH. Gaze-evoked amaurosis. Ophthalmology. 1987;94:213–8.

    Article  CAS  PubMed  Google Scholar 

  159. Arnold AC, Lee AG. Dilation of the perioptic subarachnoid space anterior to optic nerve sheath meningioma. J Neuroophthalmol. 2021;41(1):e100–2.

    Article  PubMed  Google Scholar 

  160. Hollenhorst RW, Hollenhorst RW, MacCarty CS. Visual prognosis of optic nerve sheath meningiomas producing shunt vessels on the optic disk: the Hoyt–Spencer syndrome. Trans Am Ophthalmol Soc. 1978;75:141–63.

    Google Scholar 

  161. Frisen L, Hoyt WF, Tengroth BM. Optociliary veins, disc pallor and visual loss: a triad of signs indicating spheno-orbital meningioma. Acta Ophthalmol. 1973;51(2):241–9.

    Article  CAS  Google Scholar 

  162. Wilson WB. Meningiomas of the anterior visual system. Surv Ophthalmol. 1981;26:109–27.

    Article  CAS  PubMed  Google Scholar 

  163. Swenson SA, Forbes GS, Younge BR, Campbell RJ. Radiologic evaluation of tumors of the optic nerve. Am J Neuroradiol. 1982;3:319–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Holan C, Homer NA, Epstein A, Durairaj VD. Atypical acute presentation of an optic nerve sheath meningioma. Am J Ophthalmol Case Rep. 2020;20:100951.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Alroughani R, Behbehani R. Optic nerve sheath meningioma masquerading as optic neuritis. Case Rep Neurol Med. 2016;2016:5419432.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kalen BD, Hess RA, Abi-Aad KR, et al. Addressing misdiagnosis of optic nerve sheath meningiomas. World Neurosurg. 2020;133:419–20.

    Article  PubMed  Google Scholar 

  167. Mao JF, Xia XB, Tang XB, Zhang XY, Wen D. Analyses on the misdiagnoses of 25 patients with unilateral optic nerve sheath meningioma. Int J Ophthalmol. 2016;9(9):1315–9.

    PubMed  PubMed Central  Google Scholar 

  168. Kahraman-Koytak P, Bruce BB, Peragallo JH, et al. Diagnostic errors in initial misdiagnosis of optic nerve sheath meningiomas. JAMA Neurol. 2019;76:326–32.

    Article  PubMed  Google Scholar 

  169. Jackson A, Patankar T, Laitt RD. Intracanalicular optic nerve meningioma: a serious diagnostic pitfall. Am J Neuroradiol. 2003;24:1167–70.

    PubMed  PubMed Central  Google Scholar 

  170. Jakobiec FA, Depot MJ, Kennerdell JS, et al. Combined clinical and computed tomographic diagnosis of orbital glioma end meningioma. Ophthalmology. 1984;91:P137–55.

    Article  Google Scholar 

  171. Turbin RE, Pokorny K. Diagnosis and treatment of orbital optic nerve sheath meningioma. Cancer Control. 2004;11:334–41.

    Article  PubMed  Google Scholar 

  172. Klingenstein A, Haug AR, Miller C, Hintschich C. Ga-68-DOTA-TATE PET/CT for discrimination of tumors of the optic pathway. Orbit. 2015;34(1):16–22.

    Article  PubMed  Google Scholar 

  173. Yarmohammadi A, Savino PJ, Koo SJ, Lee RR. Case report 68Ga-DATATATE of optic nerve sheath meningioma. Am J Ophthalmol Case Rep. 2021;22:101048.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jain D, Ebrahimi KB, Miller NR, Eberhart CG. Intraorbital meningiomas a pathologic review using current world health organization criteria. Arch Pathol Lab Med. 2010;134:766–70.

    Article  PubMed  Google Scholar 

  175. Marquardt MD, Zimmerman LE. Histopathology of meningiomas and gliomas of the optic nerve. Hum Pathol. 1982;13:226–35.

    Article  CAS  PubMed  Google Scholar 

  176. Parsons JT, Bova FJ, Fitzgerald CR, et al. Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30:755–63.

    Article  CAS  PubMed  Google Scholar 

  177. Turbin RE, Thompson CR, Kennerdell JS, et al. A long-term visual outcome comparison in patients with optic nerve sheath meningioma managed with observation, surgery, radiotherapy, or surgery and radiotherapy. Ophthalmology. 2002;109:890–9.

    Article  PubMed  Google Scholar 

  178. Sasano H, Shikishima K, Aoki M, Sakai T, Tsutsumi Y, Nakano T. Efficacy of intensity-modulated radiation therapy for optic nerve sheath meningioma. Graefes Arch Clin Exp Ophthalmol. 2019;257:2297–306.

    Article  PubMed  Google Scholar 

  179. Inoue T, Mimura O, Ikenaga K, et al. The rapid improvement in visual field defect observed with weekly perimetry during intensity-modulated radiotherapy for optic nerve sheath meningioma. Int Cancer Conf J. 2019;8:136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Liu JK, Forman S, Hershewe GL, et al. Optic nerve sheath meningiomas: visual improvement after stereotactic radiotherapy. Neurosurgery. 2002;50:950–7.

    PubMed  Google Scholar 

  181. Andrews DW, Faroozan R, Yang BP, et al. Fractionated stereotactic radiotherapy for the treatment of optic nerve sheath meningiomas: preliminary observations of 33 optic nerves in 30 patients with historical comparison to observation with or without prior surgery. Neurosurgery. 2002;51:890–902.

    PubMed  Google Scholar 

  182. Narayan S, Cornblath WT, Sandler HM, et al. Preliminary visual outcomes after three dimensional conformal radiation therapy for optic nerve sheath meningioma. Int J Radiat Oncol Biol Phys. 2003;56:537–43.

    Article  PubMed  Google Scholar 

  183. Baumert BG, Villa S, Studer G, et al. Early improvements in vision after fractionated stereotactic radiotherapy for primary optic nerve sheath meningioma. Radiother Oncol. 2004;72:169–74.

    Article  PubMed  Google Scholar 

  184. Richards JC, Roden D, Harper CS. Management of sight-threatening optic nerve sheath meningioma with fractionated stereotactic radiotherapy. Clin Exp Ophthalmol. 2005;33:137–41.

    Article  PubMed  Google Scholar 

  185. Pitz S, Becker G, Schiefer U, et al. Stereotactic fractionated irradiation of optic nerve sheath meningioma: a new treatment alternative. Br J Ophthalmol. 2002;86:1265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lesser RL, Knisely JP, Wang SL, et al. Long-term response to fractionated radiotherapy of presumed optic nerve sheath meningioma. Br J Ophthalmol. 2010;94:559–63.

    Article  PubMed  Google Scholar 

  187. Metellus P, Kapoor S, Kharkar S, et al. Fractionated conformal radiotherapy of optic nerve sheath meningiomas: long-term outcomes of tumor control and visual function at a single institution. Int J Radiat Oncol Biol Phys. 2011;80:185–92.

    Article  PubMed  Google Scholar 

  188. Pacelli R, Cella L, Conson M, Tranfa F, Strianese D, Liuzzi R, Solla R, Farella A, Salvatore M, Bonavolontà G. Fractionated stereotactic radiation therapy for orbital optic nerve sheath meningioma—a single institution experience and a short review of the literature. J Radiat Res. 2011;52:82–7.

    Article  PubMed  Google Scholar 

  189. Ratnayake G, Oh T, Mehta R, Hardy T, Woodford K, Haward R, et al. Long-term treatment outcomes of patients with primary optic nerve sheath meningioma treated with stereotactic radiotherapy. J Clin Neurosci. 2019;68:162–7.

    Article  PubMed  Google Scholar 

  190. Abouaf L, Girard N, Lefort T, et al. Standard-fractionated radiotherapy for optic nerve sheath meningioma: visual outcome is predicted by mean eye dose. Int J Radiat Oncol Biol Phys. 2012;82:1268–77.

    Article  PubMed  Google Scholar 

  191. Subramanian PS, Bressler NM, Miller NR. Radiation retinopathy after fractionated stereotactic radiotherapy for optic nerve sheath meningioma. Ophthalmology. 2004;111:565–7.

    Article  PubMed  Google Scholar 

  192. Pintea B, Boström A, Katsigiannis S, Gousias K, Pintea R, Baumert B, Boström J. Prognostic factors for functional outcome of patients with optic nerve sheath meningiomas treated with stereotactic radiotherapy-evaluation of own and meta-analysis of published data. Cancers (Basel). 2021;13(3):522.

    Article  PubMed  Google Scholar 

  193. Senger C, Kluge A, Kord M, Zimmermann Z, Conti A, Kufeld M, Kreimeier A, Loebel F, Stromberger C, Budach V, Vajkoczy P, Acker G. Effectiveness and safety of robotic radiosurgery for optic nerve sheath meningiomas: a single institution series. Cancers (Basel). 2021;13(9):2165.

    Article  PubMed  Google Scholar 

  194. Kwon Y, Bae JS, Kim JM, et al. Visual changes after gamma knife surgery for optic nerve tumors. Report of three cases. J Neurosurg. 2005;102(Suppl):43–6.

    Google Scholar 

  195. Adeberg S, Welzel T, Rieken S, Debus J, Combs SE. Prior surgical intervention and tumor size impact clinical outcome after precision radiotherapy for the treatment of optic nerve sheath meningiomas (ONSM). Radiat Oncol. 2011;6:117.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Romanelli P, Bianchi L, Muacevic A, Beltramo G. Staged image guided robotic radiosurgery for optic nerve sheath meningiomas. Comput Aided Surg. 2011;16:257–66.

    Article  PubMed  Google Scholar 

  197. Metellus P, Kapoor S, Kharkar S, Batra S, Jackson JF, Kleinberg L, Miller NR, Rigamonti D. Fractionated conformal radiotherapy for management of optic nerve sheath meningiomas: long-term outcomes of tumor control and visual function at a single institution. Int J Radiat Oncol. 2011;80:185–92.

    Article  Google Scholar 

  198. Klink DF, Miller NR, Williams J. Preservation of residual vision 2 years after stereotactic radiosurgery for a presumed optic nerve sheath meningioma. J Neuroophthalmol. 1998;18:117–20.

    Article  CAS  PubMed  Google Scholar 

  199. Romanelli P, Wowra B, Muacevic A. Multisession CyberKnife radiosurgery for optic nerve sheath meningiomas. Neurosurg Focus. 2007;23:E11–6.

    Article  PubMed  Google Scholar 

  200. Marchetti M, Bianchi S, Milanesi I, et al. Multisession radiosurgery for optic nerve sheath meningiomas—an effective option: preliminary results of a single-center experience. Neurosurgery. 2011;69:1116–22.

    Article  PubMed  Google Scholar 

  201. Moyal L, Vignal-Clermont C, Boissonnet H, et al. Results of fractionated targeted proton beam therapy in the treatment of optic nerve sheath meningioma. J Fr Ophtalmol. 2014;37:288–95.

    Article  CAS  PubMed  Google Scholar 

  202. Spitz FR, Bouvet M, Pisters PW, et al. Hemangiopericytoma: a 20-year single-institution experience. Ann Surg Oncol. 1998;5:350–5.

    Article  CAS  PubMed  Google Scholar 

  203. Mena H, Ribas JL, Pezeshkpour GH, et al. Hemangiopericytoma of the central nervous system: a review of 94 cases. Hum Pathol. 1991;22:84–91.

    Article  CAS  PubMed  Google Scholar 

  204. Enzinger FM, Smith BH. Hemangiopericytoma: an analysis of 106 cases. Hum Pathol. 1976;7:61–82.

    Article  CAS  PubMed  Google Scholar 

  205. Fountas KN, Kapsalaki E, Kassam M, et al. Management of intracranial meningeal hemangiopericytomas: outcome and experience. Neurosurg Rev. 2006;29:145–53.

    Article  CAS  PubMed  Google Scholar 

  206. Boniuk M, Messmer EP, Font RL. Hemangiopericytoma of the meninges of the optic nerve. A clinicopathologic report including electron microscopic observation. Ophthalmology. 1985;92:1780–7.

    Article  CAS  PubMed  Google Scholar 

  207. Schwent BJ, Wojino TH, Grossniklaus HE. Hemangiopericytoma of the optic nerve sheath. Am J Ophthalmol. 2007;143:904–6.

    Article  PubMed  Google Scholar 

  208. Manjandavida PF, Honavar SG, Gowrishankar S, et al. Optic nerve meningeal hemangiopericytoma: a clinicopathologic case report. Surv Ophthalmol. 2013;58:341–7.

    Article  PubMed  Google Scholar 

  209. Galanis E, Buckner JC, Scheithauer BW, et al. Management of recurrent meningeal hemangiopericytoma. Cancer. 1998;82:1915–20.

    Article  CAS  PubMed  Google Scholar 

  210. Furusato E, Valenzuela IA, Fanburg-Smith JC, et al. Orbital solitary fibrous tumor: encompassing terminology for hemangiopericytoma, giant cell angiofibroma, and fibrous histiocytoma of the orbit: reappraisal of 41 cases. Hum Pathol. 2011;42:120–8.

    Article  PubMed  Google Scholar 

  211. Kim JH, Jung H, Kim Y. Meningeal hemangiopericytomas: long-term outcome and biological behavior. Surg Neurol. 2003;59:47–54.

    Article  PubMed  Google Scholar 

  212. Perry A, Scheithauer BW, Nascimento AG, et al. The immunophenotypic spectrum of meningeal hemangiopericytoma: a comparison with fibrous meningioma and solitary fibrous tumor of meninges. Am J Surg Pathol. 1997;21:1353–60.

    Article  Google Scholar 

  213. Staples JJ, Robinson RA, Wen BC, et al. Hemangiopericytoma—the role of radiotherapy. Int J Radiat Oncol Biol Phys. 1990;19:445–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel C. Y. Chan .

Editor information

Editors and Affiliations

Ethics declarations

The author has nothing to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, N.C.Y. (2023). Optic Nerve Neoplasm. In: POON, T.L., MAK, C., YUEN, H.K.L. (eds) Orbital Apex and Periorbital Skull Base Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-2989-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2989-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2988-7

  • Online ISBN: 978-981-99-2989-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics