Skip to main content

The Chip Formation Mechanism for the Machining of the EN8 Unalloyed Steel

  • Conference paper
  • First Online:
Recent Advances in Materials and Manufacturing Technology (ICAMMT 2022)

Abstract

The EN8 carbon steel (unalloyed) was machined at different machining conditions in a lathe. The Indoloy IK-20 tungsten carbide tool was used for the dry turning of the material. The true stress–true strain curve for the material was obtained and the stress–strain relationship was obtained as σ = 850.48εn. The von Mises stresses (VMSs) were determined for different experimental parameters. The collected chips for all the machining conditions were examined under the scanning electron microscope (SEM). The mechanism of chip formation was identified by observing the SEM images for the chips. The mechanism was further established with reference to the extent of von Mises stress generation. The mechanism of chip formation depends upon the experimental parameters. The machining chips were formed by successive lamellar shear sliding with and without the presence of dislocation. The von Mises stress increases during the lamellar shear sliding chip formation at the higher strain rate. The chip formation was influenced by the crack formation at higher speed and feed to reduce the level of von Mises stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahendran R, Rajkumar PL, Nirmal R, Karthikeyan S, Rajeshkumar L (2021) Effect of deep cryogenic treatment on tool life of multilayer coated carbide inserts by shoulder milling of EN8 steel. J Braz Soc Mech Sci Eng 43:378. https://doi.org/10.1007/s40430-021-03100-7

    Article  Google Scholar 

  2. Palash B, Arnab K, Dhiraj M, Prasanta KB (2018) Effect of heat treatment on microstructure behavior and hardness of EN 8 steel. In: International conference on mechanical, materials and renewable energy. IOP Conf Ser: Mater Sci Eng 377:012065. IOP Publishing. https://doi.org/10.1088/1757-899X/377/1/012065

  3. Thangarasu SK, Shankar S, Mohanraj T, Devendran K (2020) Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network. Proc IMechE Part C: J Mech Eng Sci 234(1):329–342 (2020). IMechE SAGE. https://doi.org/10.1177/0954406219873932

  4. Singh H, Sharma S, Gaba M (2016) Analysis of surface roughness and material removal rate in dry and thermal assisted machining of EN8. Int J Eng Sci Res Technol 5(3):737–743.Thomson Reuters. https://doi.org/10.5281/zenodo.48350

  5. Nangare AS, Jadhav VS (2020) Optimization of process parameters for machining of en8 steel on cnc vertical milling machine. In: Optimization Methods in Engineering. Lecture notes on multidisciplinary industrial engineering book series (LNMUINEN). Springer, pp 503–511

    Google Scholar 

  6. Thangarasu SK, Shankar S, Navin Prasath R (2019) Experimental study and optimisation in turning process of EN8 steel using RSM with hybrid algorithm approach. Int J Bio-Inspired Comput 13(4):242–256

    Google Scholar 

  7. Biswas P, Kundu A, Mandal D (2017) An experimental investigation on hardness and micro structure of heat treated EN 9 steel. IOP conf Ser Mater Sci Eng 225

    Google Scholar 

  8. Roopa D, Mudakappanavar VS, Suresh R, Chavan TK (2022) Influence of process parameters on tool wear and temperature of coated HSS tools on drilling of hardened EN8 alloy steel. https://doi.org/10.1016/j.matpr.2021.09.169

  9. Murali D, Narayanamoorthy K, Aagashram N, Baig R, Gnanasekaran K, Ramesh K (2020) Performance comparison of cryogenic treated tool vs untreated tool using an accelerometer sensor. IJEAT 10(2):12–14

    Google Scholar 

  10. Gurugubelli S, Chekuri RBR, Penmetsa RV (2022) Experimental investigation and optimization of turning process of EN8 steel using Taguchi L9 orthogonal array. Mater Today Proc 2214–7853

    Google Scholar 

  11. Biswas P, Kundu A, Mondal D, Bardhan PK (2018) Effect of heat treatment on microstructure behavior and hardness of EN8 steel. IOP Conf Ser Mater Sci Eng 377

    Google Scholar 

  12. Astakhov VP (2006) Tribology of metal cutting. In: Briscoe BJ (ed) Tribology and interface engineering series, no.52. Elsevier

    Google Scholar 

Download references

Acknowledgements

The SEM images were obtained from IIT Kanpur. Accordingly, authors are grateful to IIT Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Chakraborty, K. (2023). The Chip Formation Mechanism for the Machining of the EN8 Unalloyed Steel. In: Nayak, R.K., Pradhan, M.K., Mandal, A., Davim, J.P. (eds) Recent Advances in Materials and Manufacturing Technology. ICAMMT 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-2921-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2921-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2920-7

  • Online ISBN: 978-981-99-2921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics