Skip to main content

Current Applications and Future Perspectives of Nanotechnology for the Preservation and Enhancement of Grain and Seed Traits

  • Chapter
  • First Online:
Nanomaterials for Environmental and Agricultural Sectors

Abstract

Achieving food security worldwide is a major challenge because nearly 700 million people face hunger and more than 2 billion are affected by mineral and vitamin deficiencies (the so-called “hidden hunger”). Food insecurity can be addressed by implementing sustainable food systems to improve postharvest management of seeds (the propagation structures for the next crop generation) and grains (consumed as food or feed), to which nano-enabled technologies can greatly contribute. This chapter provides an updated description of the use of nanotechnology to improve seed and grain traits. First, the use of nano-priming and nano-coating techniques with different nanomaterials, the mechanisms involved, and their effects on seed germination and seedling growth are described. Furthermore, how to prevent and reduce mycotoxin contamination in grains, where some examples of nanoformulations are addressed (nanoparticles, nanocarriers, nanoliposomes, nanocapsules, nanoemulsions or nanoformulations, and nanoadsorbents) is also described. Under this scope, the challenges and future perspectives of this technology are also described, emphasizing the relevance of involving stakeholders (including consumer perception) and considering human health and environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioannou A, Gohari G, Papaphilippou P, Panahirad S, Akbari A, Dadpour MR, Krasia-Christoforou T, Fotopoulos V (2020) Advanced nanomaterials in agriculture under a changing climate: the way to the future? Environ Exp Bot 176:104048. https://doi.org/10.1016/j.envexpbot.2020.104048

    Article  CAS  Google Scholar 

  2. Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YA-G, Badr A, Osman MEH, Elsamahy T, Jiao H, Sun J (2021) Nanobiotechnological advancements in agriculture and food industry: applications, nanotoxicity, and future perspectives. Sci Total Environ 792:148359. https://doi.org/10.1016/j.scitotenv.2021.148359

  3. FAO, FIDA, OMS, PMA, UNICEF (2022) Versión resumida de El estado de la seguridad alimentaria y la nutrición en el mundo 2022: Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. FAO, Rome, Italy

    Google Scholar 

  4. World Health Organization, Food and Agriculture Organization of the United Nations (2018) The nutrition challenge: food system solutions. https://apps.who.int/iris/handle/10665/277440. Accessed 18 Nov 2022

  5. Castro-Mayorga JL, Cabrera-Villamizar L, Balcucho-Escalante J, Fabra MJ, López-Rubio A (2020) Applications of nanotechnology in agry-food productions. In: Rajendran S, Mukherjee A, Nguyen TA, Godugu C, Shukla RK (eds) Nanotoxicity. Elsevier, pp 319–340

    Google Scholar 

  6. Falcon WP, Naylor RL, Shankar ND (2022) Rethinking global food demand for 2050. Popul Dev Rev 12508. https://doi.org/10.1111/padr.12508

  7. Kagan CR (2016) At the nexus of food security and safety: opportunities for nanoscience and nanotechnology. ACS Nano 10:2985–2986. https://doi.org/10.1021/acsnano.6b01483

    Article  CAS  Google Scholar 

  8. Majumdar S, Keller AA (2021) Omics to address the opportunities and challenges of nanotechnology in agriculture. Crit Rev Environ Sci Technol 51:2595–2636. https://doi.org/10.1080/10643389.2020.1785264

    Article  CAS  Google Scholar 

  9. Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D, Dutcher JR, Gilbertson LM, Giraldo JP, Kinsella JM, Landry MP, Lovell W, Naccache R, Paret M, Pedersen JA, Unrine JM, White JC, Wilkinson KJ (2020) Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat Food 1:416–425. https://doi.org/10.1038/s43016-020-0110-1

    Article  CAS  Google Scholar 

  10. Neme K, Nafady A, Uddin S, Tola YB (2021) Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon 7:e08539. https://doi.org/10.1016/j.heliyon.2021.e08539

    Article  CAS  Google Scholar 

  11. Acharya A, Pal PK (2020) Agriculture nanotechnology: translating research outcome to field applications by influencing environmental sustainability. NanoImpact 19:100232. https://doi.org/10.1016/j.impact.2020.100232

    Article  Google Scholar 

  12. Vijayakumar MD, Surendhar GJ, Natrayan L, Patil PP, Ram PMB, Paramasivam P (2022) Evolution and recent scenario of nanotechnology in agriculture and food industries. J Nanomater 2022:1280411. https://doi.org/10.1155/2022/1280411

    Article  CAS  Google Scholar 

  13. Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Sun M, Venkidasamy B, Xiao J, Kai G (2022) Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. J Nanobiotechnol 20:254. https://doi.org/10.1186/s12951-022-01423-8

    Article  CAS  Google Scholar 

  14. Mahdi AA, Al-Maqtari QA, Mohammed JK, Al-Ansi W, Cui H, Lin L (2021) Enhancement of antioxidant activity, antifungal activity, and oxidation stability of Citrus reticulata essential oil nanocapsules by clove and cinnamon essential oils. Food Biosci 43:101226. https://doi.org/10.1016/j.fbio.2021.101226

  15. Singh P, Dasgupta N, Singh V, Chandra Mishra N, Singh H, Purohit SD, Srivastava N, Ranjan S, Yadav NP, Mishra BN (2020) Inhibitory effect of clove oil nanoemulsion on fumonisin isolated from maize kernels. LWT Food Sci Technol 134:110237. https://doi.org/10.1016/j.lwt.2020.110237

    Article  CAS  Google Scholar 

  16. De La Torre-Roche R, Cantu J, Tamez C, Zuverza-Mena N, Hamdi H, Adisa IO, Elmer W, Gardea-Torresdey J, White JC (2020) Seed biofortification by engineered nanomaterials: a pathway to alleviate malnutrition? J Agric Food Chem 68:12189–12202. https://doi.org/10.1021/acs.jafc.0c04881

  17. El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AE-D, Amer M, Bayoumi Y, Shalaby TA, Eid Y, Zia-ur-Rehman M (2021) Nano-biofortification of different crops to immune against COVID-19: a review. Ecotoxicol Environ Saf 222:112500. https://doi.org/10.1016/j.ecoenv.2021.112500

  18. Brown VS, Erickson TE, Merritt DJ, Madsen MD, Hobbs RJ, Ritchie AL (2021) A global review of seed enhancement technology use to inform improved applications in restoration. Sci Total Environ 798:149096. https://doi.org/10.1016/j.scitotenv.2021.149096

    Article  CAS  Google Scholar 

  19. Javed T, Afzal I, Shabbir R, Ikram K, Saqlain Zaheer M, Faheem M, Haider Ali H, Iqbal J (2022) Seed coating technology: an innovative and sustainable approach for improving seed quality and crop performance. J Saudi Soc Agric Sci S1658077X22000273. https://doi.org/10.1016/j.jssas.2022.03.003

  20. Rao NK, Dulloo ME, Engels JMM (2017) A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet Resour Crop Evol 64:1061–1074. https://doi.org/10.1007/s10722-016-0425-9

    Article  CAS  Google Scholar 

  21. Shelar A, Singh AV, Maharjan RS, Laux P, Luch A, Gemmati D, Tisato V, Singh SP, Santilli MF, Shelar A, Chaskar M, Patil R (2021) Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells 10:2428. https://doi.org/10.3390/cells10092428

    Article  CAS  Google Scholar 

  22. Sohail M, Pirzada T, Opperman CH, Khan SA (2022) Recent advances in seed coating technologies: transitioning toward sustainable agriculture. Green Chem 24:6052–6085. https://doi.org/10.1039/D2GC02389J

    Article  CAS  Google Scholar 

  23. Kaur R, Chandra J, Keshavkant S (2021) Nanotechnology: an efficient approach for rejuvenation of aged seeds. Physiol Mol Biol Plants 27:399–415. https://doi.org/10.1007/s12298-021-00942-2

    Article  CAS  Google Scholar 

  24. Itroutwar PD, Govindaraju K, Tamilselvan S, Kannan M, Raja K, Subramanian KS (2020) Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J Plant Growth Regul 39:717–728. https://doi.org/10.1007/s00344-019-10012-3

    Article  CAS  Google Scholar 

  25. Itroutwar PD, Govindaraju K, Tamilselvan S, Kannan M, Vasantharaja R, Chaturvedi S, Shkolnik D (2021) Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol Biochem 162:564–580. https://doi.org/10.1016/j.plaphy.2021.03.023

    Article  CAS  Google Scholar 

  26. Itroutwar PD, Kasivelu G, Raguraman V, Malaichamy K, Sevathapandian SK (2020) Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatal Agric Biotechnol 29:101778. https://doi.org/10.1016/j.bcab.2020.101778

    Article  Google Scholar 

  27. Cyriac J, Melethil K, Thomas B, Sreejit M, Varghese T (2020) Synthesis of biogenic ZnO nanoparticles and its impact on seed germination and root growth of Oryza sativa L. and Vigna unguiculata L. Mater Today Proc 25:224–229. https://doi.org/10.1016/j.matpr.2020.01.107

    Article  CAS  Google Scholar 

  28. Mazhar MW, Ishtiaq M, Hussain I, Parveen A, Bhatti K, Azeem M, Thind S, Ajaib M, Maqbool M, Sardar T, Muzammil K, Nasir N (2022) Seed nano-priming with zinc oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PLoS One 17:e0264967. https://doi.org/10.1371/journal.pone.0264967

    Article  CAS  Google Scholar 

  29. Sunny NE, Mathew SS, Venkat Kumar S, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y (2022) Effect of green synthesized nano-titanium synthesized from Trachyspermum ammi extract on seed germination of Vigna radiate. Chemosphere 300:134600. https://doi.org/10.1016/j.chemosphere.2022.134600

    Article  CAS  Google Scholar 

  30. Basahi M (2021) Seed germination with titanium dioxide nanoparticles enhances water supply, reserve mobilization, oxidative stress and antioxidant enzyme activities in pea. Saudi J Biol Sci 28:6500–6507. https://doi.org/10.1016/j.sjbs.2021.07.023

    Article  CAS  Google Scholar 

  31. Kapoor P, Dhaka RK, Sihag P, Mehla S, Sagwal V, Singh Y, Langaya S, Balyan P, Singh KP, Xing B, White JC, Dhankher OP, Kumar U (2022) Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: current understanding and future scope. NanoImpact 26:100407. https://doi.org/10.1016/j.impact.2022.100407

    Article  CAS  Google Scholar 

  32. Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi H-K, Arshad M (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem 65:5598–5606. https://doi.org/10.1021/acs.jafc.7b01843

    Article  CAS  Google Scholar 

  33. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-Y, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285. https://doi.org/10.1021/jf404046v

  34. Gómez-Aracena J, Riemersma RA, Gutiérrez-Bedmar M, Bode P, Kark JD, Garcia-Rodríguez A, Gorgojo L, van’t Veer P, Fernández-Crehuet J, Kok FJ, Martin-Moreno JM (2006) Toenail cerium levels and risk of a first acute myocardial infarction: the EURAMIC and heavy metals study. Chemosphere 64:112–120. https://doi.org/10.1016/j.chemosphere.2005.10.062

  35. Khan MK, Pandey A, Hamurcu M, Gezgin S, Athar T, Rajput VD, Gupta OP, Minkina T (2021) Insight into the prospects for nanotechnology in wheat biofortification. Biology 10:1123. https://doi.org/10.3390/biology10111123

    Article  CAS  Google Scholar 

  36. Pereira A do ES, Oliveira H, Fraceto LF, Santaella C (2021) Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11:267. https://doi.org/10.3390/nano11020267

  37. Dutta S, Pal S, Panwar P, Sharma RK, Bhutia PL (2022) Biopolymeric nanocarriers for nutrient delivery and crop biofortification. ACS Omega 7:25909–25920. https://doi.org/10.1021/acsomega.2c02494

    Article  CAS  Google Scholar 

  38. Merinero M, Alcudia A, Begines B, Martínez G, Martín-Valero MJ, Pérez-Romero JA, Mateos-Naranjo E, Redondo-Gómez S, Navarro-Torre S, Torres Y, Merchán F, Rodríguez-Llorente ID, Pajuelo E (2022) Assessing the biofortification of wheat plants by combining a plant growth-promoting rhizobacterium (PGPR) and polymeric Fe-nanoparticles: allies or enemies? Agronomy 12:228.https://doi.org/10.3390/agronomy12010228

  39. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112. https://doi.org/10.1007/s10311-017-0670-y

    Article  CAS  Google Scholar 

  40. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64:6148–6155. https://doi.org/10.1021/acs.jafc.6b02239

    Article  CAS  Google Scholar 

  41. do Pereira AES, Oliveira HC, Fraceto LF (2019) Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Sci Rep 9:7135. https://doi.org/10.1038/s41598-019-43494-y

  42. Li R, He J, Xie H, Wang W, Bose SK, Sun Y, Hu J, Yin H (2019) Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol 126:91–100. https://doi.org/10.1016/j.ijbiomac.2018.12.118

    Article  CAS  Google Scholar 

  43. Farias BV, Pirzada T, Mathew R, Sit TL, Opperman C, Khan SA (2019) Electrospun polymer nanofibers as seed coatings for crop protection. ACS Sustain Chem Eng 7:19848–19856. https://doi.org/10.1021/acssuschemeng.9b05200

    Article  CAS  Google Scholar 

  44. Xu T, Ma C, Aytac Z, Hu X, Ng KW, White JC, Demokritou P (2020) Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain Chem Eng 8:9537–9548. https://doi.org/10.1021/acssuschemeng.0c02696

    Article  CAS  Google Scholar 

  45. Adak T, Kumar J, Shakil NA, Pandey S (2016) Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings. J Sci Food Agric 96:4351–4357. https://doi.org/10.1002/jsfa.7643

    Article  CAS  Google Scholar 

  46. de Castro e Silva P, Pereira LAS, Lago AMT, Valquíria M, de Rezende ÉM, Carvalho GR, Oliveira JE, Marconcini JM (2019) Physical-mechanical and antifungal properties of pectin nanocomposites/neem oil nanoemulsion for seed coating. Food Biophys 14:456–466. https://doi.org/10.1007/s11483-019-09592-0

  47. Tian F, Chen W, Wu C, Kou X, Fan G, Li T, Wu Z (2019) Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. Int J Biol Macromol 126:917–925. https://doi.org/10.1016/j.ijbiomac.2018.12.177

    Article  CAS  Google Scholar 

  48. Asim M, Ahmad W, Qamar Z, Awais M, Nepal J, Ahmad I (2022) Seed coating with zinc oxide nanofiber (ZnONF) and urea improved zinc uptake; recovery efficiency, growth, and yield of bread wheat (Triticum aestivum L.). J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-022-00978-7

  49. Baddar ZE, Unrine JM (2018) Functionalized-ZnO-nanoparticle seed treatments to enhance growth and Zn content of wheat (Triticum aestivum) seedlings. J Agric Food Chem 66:12166–12178. https://doi.org/10.1021/acs.jafc.8b03277

    Article  CAS  Google Scholar 

  50. Krishnamoorthy V, Rajiv S (2018) Tailoring electrospun polymer blend carriers for nutrient delivery in seed coating for sustainable agriculture. J Clean Prod 177:69–78. https://doi.org/10.1016/j.jclepro.2017.12.141

    Article  CAS  Google Scholar 

  51. Mohanraj J, Subramanian KS, Raja K (2022) Effect of multinutrients loaded electrospun PVA nanofibre on germination and its growth parameters of green gram [Vigna radiata (L.) Wilczek]. Legume Res 45:587–593

    Google Scholar 

  52. Montanha GS, Rodrigues ES, Marques JPR, de Almeida E, Colzato M, de Carvalho HWP (2020) Zinc nanocoated seeds: an alternative to boost soybean seed germination and seedling development. SN Appl Sci 2:857. https://doi.org/10.1007/s42452-020-2630-6

    Article  CAS  Google Scholar 

  53. Tondey M, Kalia A, Singh A, Dheri GS, Taggar MS, Nepovimova E, Krejcar O, Kuca K (2021) Seed priming and coating by nano-scale zinc oxide particles improved vegetative growth, yield and quality of fodder maize (Zea mays). Agronomy 11:729. https://doi.org/10.3390/agronomy11040729

    Article  CAS  Google Scholar 

  54. Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z (2022) Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NanoImpact 28:100420. https://doi.org/10.1016/j.impact.2022.100420

    Article  CAS  Google Scholar 

  55. Safdar M, Kim W, Park S, Gwon Y, Kim Y-O, Kim J (2022) Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnol 20:275. https://doi.org/10.1186/s12951-022-01483-w

    Article  CAS  Google Scholar 

  56. Wang Y, Deng C, Rawat S, Cota-Ruiz K, Medina-Velo I, Gardea-Torresdey JL (2021) Evaluation of the effects of nanomaterials on rice (Oryza sativa L.) responses: underlining the benefits of nanotechnology for agricultural applications. ACS Agric Sci Technol 1:44–54. https://doi.org/10.1021/acsagscitech.1c00030

    Article  CAS  Google Scholar 

  57. Sobze J-M, Galagedara L, Cheema M, Thomas R, Inoue S (2022) The potential of carbon nanoparticles as a stimulant to improve the propagation of native boreal forest species: a mini-review. Front For Glob Change 5:872780. https://doi.org/10.3389/ffgc.2022.872780

    Article  Google Scholar 

  58. Ali MdH, Sobze J-M, Pham TH, Nadeem M, Liu C, Galagedara L, Cheema M, Thomas R (2020) Carbon nanotubes improved the germination and vigor of plant species from peatland ecosystem via remodeling the membrane lipidome. Nanomaterials 10:1852. https://doi.org/10.3390/nano10091852

    Article  CAS  Google Scholar 

  59. Faraz A, Faizan M, Sami F, Siddiqui H, Pichtel J, Hayat S (2019) Nanoparticles: biosynthesis, translocation and role in plant metabolism. IET Nanobiotechnol 13:345–352. https://doi.org/10.1049/iet-nbt.2018.5251

    Article  Google Scholar 

  60. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973. https://doi.org/10.1021/am402052x

    Article  CAS  Google Scholar 

  61. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263. https://doi.org/10.1038/s41598-017-08669-5

    Article  CAS  Google Scholar 

  62. Banerjee A, Roychoudhury A (2022) Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. Chemosphere 286:131827. https://doi.org/10.1016/j.chemosphere.2021.131827

    Article  CAS  Google Scholar 

  63. Tripathi D, Singh M, Pandey-Rai S (2022) Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress 6:100107. https://doi.org/10.1016/j.stress.2022.100107

    Article  CAS  Google Scholar 

  64. Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107. https://doi.org/10.1079/SSR2004159

    Article  CAS  Google Scholar 

  65. Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M (2016) Staying alive: molecular aspects of seed longevity. Plant Cell Physiol 57:660–674. https://doi.org/10.1093/pcp/pcv186

    Article  CAS  Google Scholar 

  66. Kandhol N, Singh VP, Ramawat N, Prasad R, Chauhan DK, Sharma S, Grillo R, Sahi S, Peralta-Videa J, Tripathi DK (2022) Nano-priming: impression on the beginner of plant life. Plant Stress 5:100091. https://doi.org/10.1016/j.stress.2022.100091

  67. Hamad GM, Mehany T, Simal-Gandara J, Abou-Alella S, Esua OJ, Abdel-Wahhab MA, Hafez EE (2023) A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 144:109350. https://doi.org/10.1016/j.foodcont.2022.109350

  68. Song C, Qin J (2022) High-performance fabricated nano-adsorbents as emerging approach for removal of mycotoxins: a review. Int J Food Sci Technol 57:5781–5789. https://doi.org/10.1111/ijfs.15953

    Article  CAS  Google Scholar 

  69. Singh BK, Tiwari S, Dubey NK (2021) Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. J Sci Food Agric 101:4879–4890. https://doi.org/10.1002/jsfa.11255

    Article  CAS  Google Scholar 

  70. Pietrzak K, Twarużek M, Czyżowska A, Kosicki R, Gutarowska B (2015) Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim Pol 62:851–857

    Article  CAS  Google Scholar 

  71. Kim K-J, Sung WS, Suh BK, Moon S-K, Choi J-S, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22:235–242. https://doi.org/10.1007/s10534-008-9159-2

    Article  CAS  Google Scholar 

  72. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284. https://doi.org/10.1016/j.msec.2014.08.031

    Article  CAS  Google Scholar 

  73. Asghar MA, Zahir E, Shahid SM, Khan MN, Asghar MA, Iqbal J, Walker G (2018) Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT Food Sci Technol 90:98–107. https://doi.org/10.1016/j.lwt.2017.12.009

    Article  CAS  Google Scholar 

  74. Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI (2021) Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J Fungi 7:1033. https://doi.org/10.3390/jof7121033

    Article  CAS  Google Scholar 

  75. El-Naggar MA, Alrajhi AM, Fouda MM, Abdelkareem EM, Thabit TM, Bouqellah NA (2018) Effect of silver nanoparticles on toxigenic Fusarium spp. and deoxynivalenol secretion in some grains. J AOAC Int 101:1534–1541. https://doi.org/10.5740/jaoacint.17-0442

    Article  CAS  Google Scholar 

  76. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356. https://doi.org/10.1016/j.carbpol.2012.10.025

    Article  CAS  Google Scholar 

  77. Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Médicale 22:322–328. https://doi.org/10.1016/j.mycmed.2012.09.006

    Article  CAS  Google Scholar 

  78. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215. https://doi.org/10.1016/j.micres.2010.03.003

    Article  CAS  Google Scholar 

  79. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KVB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84. https://doi.org/10.1016/j.saa.2012.01.006

    Article  CAS  Google Scholar 

  80. Sun Q, Li J, Le T (2018) Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J Agric Food Chem 66:11209–11220. https://doi.org/10.1021/acs.jafc.8b03210

    Article  CAS  Google Scholar 

  81. Shen T, Wang Q, Li C, Zhou B, Li Y, Liu Y (2020) Transcriptome sequencing analysis reveals silver nanoparticles antifungal molecular mechanism of the soil fungi Fusarium solani species complex. J Hazard Mater 388:122063. https://doi.org/10.1016/j.jhazmat.2020.122063

    Article  CAS  Google Scholar 

  82. Lee J, Kim K-J, Sung WS, Kim JG, Lee DG (2010) The silver nanoparticle (nano-Ag): a new model for antifungal agents. In: Pérez-Pozo D (ed) Silver nanoparticles. IntechOpen, pp 295–308

    Google Scholar 

  83. Pinto RJB, Almeida A, Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Trindade T (2013) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf B Biointerfaces 103:143–148. https://doi.org/10.1016/j.colsurfb.2012.09.045

    Article  CAS  Google Scholar 

  84. Deabes MM, Khalil WKB, Attallah AG, El-Desouky TA, Naguib KM (2018) Impact of silver nanoparticles on gene expression in Aspergillus flavus producer aflatoxin B1. Open Access Maced J Med Sci 6:600–605. https://doi.org/10.3889/oamjms.2018.117

  85. Ibarra-Laclette E, Blaz J, Pérez-Torres C-A, Villafán E, Lamelas A, Rosas-Saito G, Ibarra-Juárez LA, de García-Ávila CJ, Martínez-Enriquez AI, Pariona N (2022) Antifungal effect of copper nanoparticles against Fusarium kuroshium, an obligate symbiont of Euwallacea kuroshio ambrosia beetle. J Fungi 8:347. https://doi.org/10.3390/jof8040347

  86. Medici S, Peana M, Pelucelli A, Zoroddu MA (2021) An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 76:17–26. https://doi.org/10.1016/j.semcancer.2021.06.020

    Article  CAS  Google Scholar 

  87. Roy A, Bulut O, Some S, Kumar Mandal A, Deniz Yilmaz M (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702. https://doi.org/10.1039/C8RA08982E

    Article  CAS  Google Scholar 

  88. Silveira MP, de Neves N A, da Silveira JVW, Schmiele M (2019) Nanotechnology applied to cereal grains and cereal-based products and its food safety. In: Molina G, Inamuddin, Pelissari FM, Asiri AM (eds) Food applications of nanotechnology, 1st edn. CRC Press, Boca Raton, Fl, pp 211–223

    Google Scholar 

  89. Bazana MT, Codevilla CF, de Menezes CR (2019) Nanoencapsulation of bioactive compounds: challenges and perspectives. Curr Opin Food Sci 26:47–56. https://doi.org/10.1016/j.cofs.2019.03.005

    Article  Google Scholar 

  90. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327. https://doi.org/10.1080/08982100802465941

    Article  CAS  Google Scholar 

  91. Rafiee Z, Barzegar M, Sahari MA, Maherani B (2018) Nanoliposomes containing pistachio green hull’s phenolic compounds as natural bio-preservatives for mayonnaise. Eur J Lipid Sci Technol 120:1800086. https://doi.org/10.1002/ejlt.201800086

    Article  CAS  Google Scholar 

  92. Zarrabi A, Abadi MAA, Khorasani S, Mohammadabadi M-R, Jamshidi A, Torkaman S, Taghavi E, Mozafari MR, Rasti B (2020) Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules 25:638. https://doi.org/10.3390/molecules25030638

    Article  CAS  Google Scholar 

  93. Karimi N, Ghanbarzadeh B, Hajibonabi F, Hojabri Z, Ganbarov K, Kafil HS, Hamishehkar H, Yousefi M, Mokarram RR, Kamounah FS, Yousefi B, Moaddab SR (2019) Turmeric extract loaded nanoliposome as a potential antioxidant and antimicrobial nanocarrier for food applications. Food Biosci 29:110–117. https://doi.org/10.1016/j.fbio.2019.04.006

    Article  Google Scholar 

  94. Aguilar-Pérez KM, Medina DI, Narayanan J, Parra-Saldívar R, Iqbal HMN (2021) Synthesis and nano-sized characterization of bioactive oregano essential oil molecule-loaded small unilamellar nanoliposomes with antifungal potentialities. Molecules 26:2880. https://doi.org/10.3390/molecules26102880

  95. Aguilar-Pérez KM, Medina DI, Parra-Saldívar R, Iqbal HMN (2022) Nano-size characterization and antifungal evaluation of essential oil molecules-loaded nanoliposomes. Molecules 27:5728. https://doi.org/10.3390/molecules27175728

  96. Atienza MaTJA, Magpantay MaDA, Santos KLT, Mora NB, Balaraman RP, Gemeinhardt ME, Dela Cueva FM, Paterno ES, Fernando LM, Kohli P (2021) Encapsulation of plant growth-promoting bacterial crude extract in nanoliposome and its antifungal property against Fusarium oxysporum. ACS Agric Sci Technol 1:691–701. https://doi.org/10.1021/acsagscitech.1c00188

  97. Bondu C, Yen FT (2022) Nanoliposomes, from food industry to nutraceuticals: interests and uses. Innov Food Sci Emerg Technol 81:103140. https://doi.org/10.1016/j.ifset.2022.103140

    Article  CAS  Google Scholar 

  98. Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24. https://doi.org/10.1016/S0169-409X(97)00048-3

    Article  CAS  Google Scholar 

  99. Antonioli G, Fontanella G, Echeverrigaray S, Longaray Delamare AP, Fernandes Pauletti G, Barcellos T (2020) Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: in vitro and in vivo evaluation against phytopathogenic fungi. Food Chem 326:126997. https://doi.org/10.1016/j.foodchem.2020.126997

  100. Khatua A, Prasad A, Priyadarshini E, Virmani I, Ghosh L, Paul B, Meena R, Barabadi H, Patel AK, Saravanan M (2020) CTAB-PLGA curcumin nanoparticles: preparation, biophysical characterization and their enhanced antifungal activity against phytopathogenic fungus Pythium ultimum. Chem Sel 5:10574–10580. https://doi.org/10.1002/slct.202002158

    Article  CAS  Google Scholar 

  101. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–2841. https://doi.org/10.1039/C5SM02958A

    Article  CAS  Google Scholar 

  102. Loi M, Paciolla C, Logrieco AF, Mulè G (2020) Plant bioactive compounds in pre- and postharvest management for aflatoxins reduction. Front Microbiol 11:243. https://www.frontiersin.org/articles/10.3389/fmicb.2020.00243

  103. Scroccarello A, Molina-Hernández B, Della Pelle F, Ciancetta J, Ferraro G, Fratini E, Valbonetti L, Chaves Copez C, Compagnone D (2021) Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger. Colloids Surf B Biointerfaces 199:111533. https://doi.org/10.1016/j.colsurfb.2020.111533

  104. Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87:899–911. https://doi.org/10.1007/s00253-010-2657-5

    Article  CAS  Google Scholar 

  105. Iram W, Anjum T, Iqbal M, Ghaffar A, Abbas M (2015) Mass spectrometric identification and toxicity assessment of degraded products of aflatoxin B1 and B2 by Corymbia citriodora aqueous extracts. Sci Rep 5:14672. https://doi.org/10.1038/srep14672

    Article  CAS  Google Scholar 

  106. Ponzilacqua B, Rottinghaus GE, Landers BR, Oliveira CAF (2019) Effects of medicinal herb and Brazilian traditional plant extracts on in vitro mycotoxin decontamination. Food Control 100:24–27. https://doi.org/10.1016/j.foodcont.2019.01.009

    Article  CAS  Google Scholar 

  107. Velazhahan R, Vijayanandraj S, Vijayasamundeeswari A, Paranidharan V, Samiyappan R, Iwamoto T, Friebe B, Muthukrishnan S (2010) Detoxification of aflatoxins by seed extracts of the medicinal plant, Trachyspermum ammi (L.) Sprague ex Turrill—structural analysis and biological toxicity of degradation product of aflatoxin G1. Food Control 21:719–725. https://doi.org/10.1016/j.foodcont.2009.10.014

    Article  CAS  Google Scholar 

  108. Chaudhari AK, Singh VK, Das S, Dubey NK (2021) Nanoencapsulation of essential oils and their bioactive constituents: a novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 149:112019. https://doi.org/10.1016/j.fct.2021.112019

    Article  CAS  Google Scholar 

  109. Ríos J-L (2016) Essential oils: what they are and how the terms are used and defined. In: Preedy VR (ed) Essential oils in food preservation, flavor and safety. Academic Press, San Diego, pp 3–10

    Chapter  Google Scholar 

  110. Falleh H, Ben Jemaa M, Saada M, Ksouri R (2020) Essential oils: a promising eco-friendly food preservative. Food Chem 330:127268. https://doi.org/10.1016/j.foodchem.2020.127268

  111. Chaudhari AK, Singh VK, Das S, Deepika, Prasad J, Dwivedy AK, Dubey NK (2020) Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem Toxicol 143:111536. https://doi.org/10.1016/j.fct.2020.111536

  112. Chaudhari AK, Dwivedy AK, Singh VK, Das S, Singh A, Dubey NK (2019) Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ Sci Pollut Res 26:25414–25431. https://doi.org/10.1007/s11356-019-05932-2

    Article  CAS  Google Scholar 

  113. Nasseri M, Golmohammadzadeh S, Arouiee H, Jaafari MR, Neamati H (2016) Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iran J Basic Med Sci 19:1231–1237

    Google Scholar 

  114. Kalagatur NK, Nirmal Ghosh OS, Sundararaj N, Mudili V (2018) Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol 9:610. https://doi.org/10.3389/fphar.2018.00610

    Article  CAS  Google Scholar 

  115. Beyki M, Zhaveh S, Khalili ST, Rahmani-Cherati T, Abollahi A, Bayat M, Tabatabaei M, Mohsenifar A (2014) Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crops Prod 54:310–319. https://doi.org/10.1016/j.indcrop.2014.01.033

    Article  CAS  Google Scholar 

  116. Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, Bayat M, Tabatabaei M (2015) Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT Food Sci Technol 60:502–508. https://doi.org/10.1016/j.lwt.2014.07.054

    Article  CAS  Google Scholar 

  117. Zhaveh S, Mohsenifar A, Beiki M, Khalili ST, Abdollahi A, Rahmani-Cherati T, Tabatabaei M (2015) Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crops Prod 69:251–256. https://doi.org/10.1016/j.indcrop.2015.02.028

    Article  CAS  Google Scholar 

  118. Li H, Shen Q, Zhou W, Mo H, Pan D, Hu L (2015) Nanocapsular dispersion of cinnamaldehyde for enhanced inhibitory activity against aflatoxin production by Aspergillus flavus. Molecules 20:6022–6032. https://doi.org/10.3390/molecules20046022

    Article  CAS  Google Scholar 

  119. Das S, Ghosh A, Mukherjee A (2021) Nanoencapsulation-based edible coating of essential oils as a novel green strategy against fungal spoilage, mycotoxin contamination, and quality deterioration of stored fruits: an overview. Front Microbiol 12:768414. https://doi.org/10.3389/fmicb.2021.768414

    Article  Google Scholar 

  120. Tiwari S, Dubey NK (2022) Nanoencapsulated essential oils as novel green preservatives against fungal and mycotoxin contamination of food commodities. Curr Opin Food Sci 45:100831. https://doi.org/10.1016/j.cofs.2022.100831

    Article  CAS  Google Scholar 

  121. Jampílek J, Kráĺová K (2020) Chapter 14—Impact of nanoparticles on toxigenic fungi. In: Rai M, Abd-Elsalam KA (eds) Nanomycotoxicology. Academic Press, pp 309–348

    Google Scholar 

  122. Wan J, Zhong S, Schwarz P, Chen B, Rao J (2019) Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: impact of oil compositions and processing parameters. Food Chem 291:199–206. https://doi.org/10.1016/j.foodchem.2019.04.032

    Article  CAS  Google Scholar 

  123. Wan J, Zhong S, Schwarz P, Chen B, Rao J (2018) Influence of oil phase composition on the antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions. Food Funct 9:2872–2882. https://doi.org/10.1039/C7FO02073B

    Article  CAS  Google Scholar 

  124. Wan J, Zhong S, Schwarz P, Chen B, Rao J (2019) Enhancement of antifungal and mycotoxin inhibitory activities of food-grade thyme oil nanoemulsions with natural emulsifiers. Food Control 106:106709. https://doi.org/10.1016/j.foodcont.2019.106709

    Article  CAS  Google Scholar 

  125. Gill TA, Li J, Saenger M, Scofield SR (2016) Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat. J Appl Microbiol 121:1103–1116. https://doi.org/10.1111/jam.13195

  126. Wan J, Jin Z, Zhong S, Schwarz P, Chen B, Rao J (2020) Clove oil-in-water nanoemulsion: Mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley. Food Chem 312:126120. https://doi.org/10.1016/j.foodchem.2019.126120

    Article  CAS  Google Scholar 

  127. Song C, Ding G, Dai J, Wang Y, Liu Y, Zhang Y, Zhang Q, Yang J, Qin J (2022) Anti-aflatoxigenic nanoemulsions based on Monarda didyma and Neopallasia pectinata essential oils as novel green agent for food preservation. Ind Crops Prod 180:114777. https://doi.org/10.1016/j.indcrop.2022.114777

    Article  CAS  Google Scholar 

  128. Ahmed OS, Tardif C, Rouger C, Atanasova V, Richard-Forget F, Waffo-Téguo P (2022) Naturally occurring phenolic compounds as promising antimycotoxin agents: where are we now? Compr Rev Food Sci Food Saf 21:1161–1197. https://doi.org/10.1111/1541-4337.12891

    Article  CAS  Google Scholar 

  129. Milinčić DD, Popović DA, Lević SM, Kostić AŽ, Tešić ŽLj, Nedović VA, Pešić MB (2019) Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials 9:1629. https://doi.org/10.3390/nano9111629

  130. Pimentel-Moral S, Teixeira MC, Fernandes AR, Arráez-Román D, Martínez-Férez A, Segura-Carretero A, Souto EB (2018) Lipid nanocarriers for the loading of polyphenols—a comprehensive review. Adv Colloid Interface Sci 260:85–94. https://doi.org/10.1016/j.cis.2018.08.007

  131. Zhang Z, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Jin Z, Qiu C (2022) Polyphenols as plant-based nutraceuticals: health effects, encapsulation, nano-delivery, and application. Foods 11:2189. https://doi.org/10.3390/foods11152189

    Article  CAS  Google Scholar 

  132. Zhou H, Sun F, Lin H, Fan Y, Wang C, Yu D, Liu N, Wu A (2022) Food bioactive compounds with prevention functionalities against fungi and mycotoxins: developments and challenges. Curr Opin Food Sci 48:100916. https://doi.org/10.1016/j.cofs.2022.100916

    Article  CAS  Google Scholar 

  133. Muzzalupo I, Badolati G, Chiappetta A, Picci N, Muzzalupo R (2020) In vitro antifungal activity of olive (Olea europaea) leaf extracts loaded in chitosan nanoparticles. Front Bioeng Biotechnol 8:151. https://doi.org/10.3389/fbioe.2020.00151

    Article  Google Scholar 

  134. Al-Otibi F, Perveen K, Al-Saif NA, Alharbi RI, Bokhari NA, Albasher G, Al-Otaibi RM, Al-Mosa MA (2021) Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi J Biol Sci 28:2229–2235.https://doi.org/10.1016/j.sjbs.2021.01.012

  135. Zhao Z, Liu N, Yang L, Wang J, Song S, Nie D, Yang X, Hou J, Wu A (2015) Cross-linked chitosan polymers as generic adsorbents for simultaneous adsorption of multiple mycotoxins. Food Control 57:362–369. https://doi.org/10.1016/j.foodcont.2015.05.014

    Article  CAS  Google Scholar 

  136. Horky P, Skalickova S, Baholet D, Skladanka J (2018) Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials 8:727. https://doi.org/10.3390/nano8090727

    Article  CAS  Google Scholar 

  137. Abd-Elsalam KA, El-Naggar MA, Ghannouchi A, Bouqellah NA (2020) Nanomaterials and ozonation: safe strategies for mycotoxin management. In: Rai M, Abd-Elsalam KA (eds) Nanomycotoxicology. Academic Press, pp 285–308

    Google Scholar 

  138. Gibson N, Shenderova O, Luo TJM, Moseenkov S, Bondar V, Puzyr A, Purtov K, Fitzgerald Z, Brenner DW (2009) Colloidal stability of modified nanodiamond particles. Diam Relat Mater 18:620–626. https://doi.org/10.1016/j.diamond.2008.10.049

    Article  CAS  Google Scholar 

  139. Gibson NM, Luo TJM, Brenner DW, Shenderova O (2011) Immobilization of mycotoxins on modified nanodiamond substrates. Biointerphases 6:210–217. https://doi.org/10.1116/1.3672489

    Article  CAS  Google Scholar 

  140. Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:e632698. https://doi.org/10.1155/2012/632698

    Article  CAS  Google Scholar 

  141. Zhang N, Han X, Zhao Y, Li Y, Meng J, Zhang H, Liang J (2022) Removal of aflatoxin B1 and zearalenone by clay mineral materials: in the animal industry and environment. Appl Clay Sci 228:106614. https://doi.org/10.1016/j.clay.2022.106614

    Article  CAS  Google Scholar 

  142. Karami-Osboo R, Maham M, Nasrollahzadeh M (2020) Synthesised magnetic nano-zeolite as a mycotoxins binder to reduce the toxicity of aflatoxins, zearalenone, ochratoxin A, and deoxynivalenol in barley. IET Nanobiotechnol 14:623–627. https://doi.org/10.1049/iet-nbt.2020.0107

    Article  Google Scholar 

  143. Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S (2022) Application of nanomaterials for coping with mycotoxin contamination in food safety: from detection to control. Crit Rev Anal Chem in press:1–34. https://doi.org/10.1080/10408347.2022.2076063

  144. Liu C, Wang J, Wan J, Yu C (2021) MOF-on-MOF hybrids: synthesis and applications. Coord Chem Rev 432:213743. https://doi.org/10.1016/j.ccr.2020.213743

    Article  CAS  Google Scholar 

  145. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: Which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  146. Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A (2021) Biostimulation and toxicity: the magnitude of the impact of nanomaterials in microorganisms and plants. J Adv Res 31:113–126. https://doi.org/10.1016/j.jare.2020.12.011

    Article  CAS  Google Scholar 

  147. Singh D, Gurjar BR (2022) Nanotechnology for agricultural applications: facts, issues, knowledge gaps, and challenges in environmental risk assessment. J Environ Manag 322:116033. https://doi.org/10.1016/j.jenvman.2022.116033

    Article  CAS  Google Scholar 

  148. Grieger K, Merck A, Kuzma J (2022) Formulating best practices for responsible innovation of nano-agrifoods through stakeholder insights and reflection. J Respons Technol 10:100030. https://doi.org/10.1016/j.jrt.2022.100030

    Article  Google Scholar 

  149. Pedrini S, Merritt DJ, Stevens J, Dixon K (2017) Seed coating: science or marketing spin? Trends Plant Sci 22:106–116. https://doi.org/10.1016/j.tplants.2016.11.002

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially funded by the University of Costa Rica under the research project VI-734- C1-453.

Author information

Authors and Affiliations

Authors

Contributions

L.V.-F.: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review and Editing. R.Q.-G: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review and Editing. M.V.: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review and Editing. A.I.-M.: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review and Editing. G.MdO.-V.: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review and Editing. J.V.-B.: Review and Editing. V.M.J.: Conceptualization, Investigation, Writing—Review and Editing.

Corresponding author

Correspondence to Laura Vega-Fernández .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vega-Fernández, L. et al. (2023). Current Applications and Future Perspectives of Nanotechnology for the Preservation and Enhancement of Grain and Seed Traits. In: Bachheti, R.K., Bachheti, A., Husen, A. (eds) Nanomaterials for Environmental and Agricultural Sectors. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2874-3_10

Download citation

Publish with us

Policies and ethics