Skip to main content

Immunostimulatory Properties of Echinacea purpurea and Conservation Strategy

  • Chapter
  • First Online:
Plants for Immunity and Conservation Strategies
  • 138 Accesses

Abstract

Echinacea purpurea (L.) Moench, a member of the Asteraceae (Compositae) family is an important and well-known medicinal plant. The plant is used in chemoprevention and chemotherapy for infectious disorders of the upper and lower respiratory tracts. Toothaches, gut pain, snake bites, skin problems, epilepsy, chronic arthritis, and cancer have all been treated with this species in the past. For instance, research has demonstrated the plant’s ability to cause anti-anxiety, anti-depression, cytotoxicity, and anti-mutagenic effects. Echinacea has immense decorative potential in addition to its potential medical benefits. Alkamides, caffeic acid derivatives, polysaccharides, and glycoproteins are some of the plant’s secondary metabolites that have immunostimulatory properties. Echinacea’s anti-inflammatory properties are largely due to its polysaccharides. In vitro culture offers the ability to overcome a variety of problems associated with Echinacea propagation, such as bottlenecks in growth and poor seed germination, and also to meet up the increased demand. Alkamides are thought to be responsible for the immunomodulatory actions of Echinacea extracts both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu RMV, Ferreira ICFR, Calhelha RC, Lima RT, Vasconcelos MH, Adega F, Chaves R, Queiroz M-JRP (2011) Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno [3, 2-b] pyridine-2-carboxylate derivatives: in vitro evaluation, cell cycle analysis and QSAR studies. Eur J Med Chem 46(12):5800–5806

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AD (2011) Pharmacological activities of flavonoids: a review. Int J Pharm Sci Nanotechnol 4(2):1394–1398

    Google Scholar 

  • Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR (2022) Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol 12:860508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balciunaite G, Juodsnukyte J, Savickas A, Ragazinskiene O, Siatkute L, Zvirblyte G, Mistiniene E, Savickiene N (2015) Fractionation and evaluation of proteins in roots of Echinacea purpurea (L.) Moench. Acta Pharma 65(4):473–479

    Article  CAS  Google Scholar 

  • Bauer R (1999) Chemistry, analysis and immunological investigations of Echinacea phytopharmaceuticals. In: Immunomodulatory agents from plants. Springer, Cham, pp 41–88

    Chapter  Google Scholar 

  • Bauer R, Remiger P, Wagner H (1988) Echinacea vergleichende DC und HPLC: analyse der Herba–Drogen von Echinacea purpurea, E. pallida und E. angustifolia. Dtsch Apoth Ztg 128:174–180

    CAS  Google Scholar 

  • Bhatti SM, Myles EL, Long DE, Sauve R (2002) In vitro regeneration of St. Johns wort and coneflowers. SNA Research Conference 47:340–342

    Google Scholar 

  • Binns SE, Hudson J, Merali S, Arnason JT (2002) Antiviral activity of characterized extracts from Echinacea spp. (Heliantheae: Asteraceae) against herpes simplex virus (HSV-I). Planta Med 68(09):780–783

    Article  CAS  PubMed  Google Scholar 

  • Birková A, Hubková B, Bolerázska B, Mareková M, Čižmárová B (2020) Caffeic acid: a brief overview of its presence, metabolism, and bioactivity. Bioact Compd Health and Dis 3(4):74–81

    Google Scholar 

  • Bodinet C, Beuscher N (1991) Antiviral and immunological activity of glycoproteins from Echinacea purpurea radix. Planta Med 57(S2):A33–A34

    Article  Google Scholar 

  • Cai C, Chen Y, Zhong S, Ji B, Wang J, Bai X, Shi G (2014) Anti-inflammatory activity of N-butanol extract from Ipomoea stolonifera in vivo and in vitro. PLoS One 9(4):e95931

    Article  PubMed  PubMed Central  Google Scholar 

  • Cech NB, Kandhi V, Davis JM, Hamilton A, Eads D, Laster SM (2010) Echinacea and its alkylamides: effects on the influenza A-induced secretion of cytokines, chemokines, and PGE2 from RAW 264.7 macrophage-like cells. Int Immunopharmacol 10(10):1268–1278

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Ho C-T (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45(7):2374–2378

    Article  CAS  Google Scholar 

  • Chen Y, Fu T, Tao T, Yang J, Chang Y, Wang M, Kim L, Qu L, Cassady J, Scalzo R (2005) Macrophage activating effects of new alkamides from the roots of Echinacea species. J Nat Prod 68(5):773–776

    Article  CAS  PubMed  Google Scholar 

  • Chiou S-Y, Sung J-M, Huang P-W, Lin S-D (2017) Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. J Med Food 20(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Choffe KL, Victor JMR, Murch SJ, Saxena PK (2000) In vitro regeneration of Echinacea purpurea L.: direct somatic embryogenesis and indirect shoot organogenesis in petiole culture. In Vitro Cell Dev Biol-Plant 36(1):30–36

    Google Scholar 

  • Clifford MN (2000) Chlorogenic acids and other cinnamates–nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80(7):1033–1043

    Article  CAS  Google Scholar 

  • Coker PS, Camper ND (2000) In vitro culture of Echinacea purpurea L. J Herbs Spices Med Plants 7(4):1–7

    Article  Google Scholar 

  • Collins HR (2017) Caffeic acid: sources, potential uses and health benefits. Nova Science Publishers Incorporated, Hauppauge, NY

    Google Scholar 

  • Dalby-Brown L, Barsett H, Landbo A-KR, Meyer AS, Mølgaard P (2005) Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J Agric Food Chem 53(24):9413–9423

    Article  CAS  PubMed  Google Scholar 

  • Ekeuku SO, Pang K-L, Chin K-Y (2021) Effects of caffeic acid and its derivatives on bone: a systematic review. Drug Des Devel Ther 15:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Erkoyuncu MT, Yorgancilar M (2021) Optimization of callus cultures at Echinacea purpurea L. for the amount of caffeic acid derivatives. Electron J Biotechnol 51:17–27

    Article  Google Scholar 

  • Genaro-Mattos TC, Maurício ÂQ, Rettori D, Alonso A, Hermes-Lima M (2015) Antioxidant activity of caffeic acid against iron-induced free radical generation—a chemical approach. PLoS One 10(6):e0129963

    Article  PubMed  PubMed Central  Google Scholar 

  • Gertsch J, Schoop R, Kuenzle U, Suter A (2004) Echinacea alkylamides modulate TNF-α gene expression via cannabinoid receptor CB2 and multiple signal transduction pathways. FEBS Lett 577(3):563–569

    Article  CAS  PubMed  Google Scholar 

  • Goel V, Chang C, Slama JV, Barton R, Bauer R, Gahler R, Basu TK (2002) Echinacea stimulates macrophage function in the lung and spleen of normal rats. J Nutr Biochem 13(8):487–492

    Article  CAS  PubMed  Google Scholar 

  • Gould KS, Markham KR, Smith RH, Goris JJ (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot 51(347):1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Greenwald P (2004) Clinical trials in cancer prevention: current results and perspectives for the future. J Nutr 134(12):3507S–3512S

    Article  CAS  PubMed  Google Scholar 

  • Greger H (2016) Alkamides: a critical reconsideration of a multifunctional class of unsaturated fatty acid amides. Phytochem Rev 15(5):729–770

    Article  CAS  Google Scholar 

  • Grimm W, Müller H-H (1999) A randomized controlled trial of the effect of fluid extract of Echinacea purpurea on the incidence and severity of colds and respiratory infections. Am J Med 106(2):138–143

    Article  CAS  PubMed  Google Scholar 

  • Guiotto P, Woelkart K, Grabnar I, Voinovich D, Perissutti B, Invernizzi S, Granzotto M, Bauer R (2008) Pharmacokinetics and immunomodulatory effects of phytotherapeutic lozenges (bonbons) with Echinacea purpurea extract. Phytomedicine 15(8):547–554

    Article  CAS  PubMed  Google Scholar 

  • Harbage JF (2001) Micropropagation of Echinacea angustifolia, E. pallida, and E. purpurea from stem and seed explants. HortScience 36(2):360–364

    Article  CAS  Google Scholar 

  • Huang M-T, Ferraro T (1992) Phenolic compounds in food and cancer prevention. ACS Publications, Washington DC

    Book  Google Scholar 

  • Jia C, Shi H, Jin W, Zhang K, Jiang Y, Zhao M, Tu P (2009) Metabolism of echinacoside, a good antioxidant, in rats: isolation and identification of its biliary metabolites. Drug Metab Dispos 37(2):431–438

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Wang J, Li X, Zhang X (2016) Echinacoside and Cistanche tubulosa (Schenk) R. wight ameliorate bisphenol A-induced testicular and sperm damage in rats through gonad axis regulated steroidogenic enzymes. J Ethnopharmacol 193:321–328

    Article  CAS  PubMed  Google Scholar 

  • Jones M, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13(4):395–421

    Article  CAS  PubMed  Google Scholar 

  • Kim H-R, Oh S-K, Lim W, Lee HK, Moon B-I, Seoh J-Y (2014) Immune enhancing effects of Echinacea purpurea root extract by reducing regulatory T cell number and function. Nat Prod Commun 9(4):1934578X1400900422

    Google Scholar 

  • Klein, S. (2009). Polysaccharides in oral drug delivery—recent applications and future perspectives

    Google Scholar 

  • Kołodziejczyk-Czepas J, Szejk M, Pawlak A, Żbikowska H (2015) Właściwości przeciwutleniające kwasu kawowego i jego pochodnych. Zywn-Nauk Technol Ja 3(100):5–17

    Google Scholar 

  • Koroch AR, Juliani HR, Kapteyn J, Simon JE (2002) In vitro regeneration of Echinaceapurpurea from leaf explants. Plant Cell Tiss Org Cult 69:79–83

    Google Scholar 

  • Koroch AR, Kapteyn J, Juliani HR, Simon JE (2003) In vitro regeneration of Echinacea pallida from leaf explants. In Vitro Cell Dev Biol-Plant 39(4):415–418

    Article  Google Scholar 

  • Kurkin VA, Akushskaya AS, Avdeeva EV, Velmyaikina EI, Daeva ED, Kadentsev VI (2011) Flavonoids from Echinacea purpurea. Russ J Bioorg Chem 37:905–906

    Article  CAS  Google Scholar 

  • Laasonen M, Wennberg T, Harmia-Pulkkinen T, Vuorela H (2002) Simultaneous analysis of alkamides and caffeic acid derivatives for the identification of Echinacea purpurea, Echinacea angustifolia, Echinacea pallida and Parthenium integrifolium roots. Planta Med 68(06):572–574

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan P, Danesh M, Taji A (2002) Production of four commercially cultivated Echinacea species by different methods of in vitro regeneration. J Hortic Sci Biotechnol 77(2):158–163

    Article  Google Scholar 

  • Lee TT, Chen CL, Shieh ZH, Lin JC, Yu B (2009) Study on antioxidant activity of Echinacea purpurea L. extracts and its impact on cell viability. Afr J Biotechnol 8(19)

    Google Scholar 

  • Lee T-T, Huang C-C, Shieh X-H, Chen C-L, Chen L-J, Yu BI (2010) Flavonoid, phenol and polysaccharide contents of Echinacea purpurea L. and its immunostimulant capacity in vitro. Int J Environ Sci Dev 1(1):5

    Article  CAS  Google Scholar 

  • Lindblad MS, Sjöberg J, Albertsson A-C, Hartman J (2007) Hydrogels from polysaccharides for biomedical applications. ACS Publications, Washington DC

    Book  Google Scholar 

  • Liu C-Z, Abbasi BH, Gao M, Murch SJ, Saxena PK (2006) Caffeic acid derivatives production by hairy root cultures of Echinacea purpurea. J Agric Food Chem 54(22):8456–8460

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang L, Dong Y, Zhang B, Ma X (2018) Echinacoside, an inestimable natural product in treatment of neurological and other disorders. Molecules 23(5):1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Luettig B, Steinmüller C, Gifford GE, Wagner H, Lohmann-Matthes M-L (1989) Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea. JNCI: J Natl Cancer Inst 81(9):669–675

    Article  CAS  PubMed  Google Scholar 

  • Lustosa SR, Galindo AB, Nunes LCC, Randau KP, Rolim Neto PJ (2008) Propolis: updates on chemistry and pharmacology. Rev Bras 18:447–454

    CAS  Google Scholar 

  • Macchia M, Angelini LG, Ceccarini L (2001) Methods to overcome seed dormancy in Echinacea angustifolia DC. Sci Hortic 89(4):317–324

    Article  Google Scholar 

  • Magnani C, Isaac VLB, Correa MA, Salgado HRN (2014) Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods 6(10):3203–3210

    Article  CAS  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    Article  CAS  PubMed  Google Scholar 

  • Manayi A, Vazirian M, Saeidnia S (2015) Echinacea purpurea: pharmacology, phytochemistry and analysis methods. Pharmacogn Rev 9(17):63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzio EA, Soliman KFA (2009) In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res 23(3):385–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeown KA (1999) A review of the taxonomy of the genus Echinacea. In: Perspectives on new crops and new uses, vol 482. ASHS Press, Alexandria, VA, p 489

    Google Scholar 

  • Mechanda SM, Baum BR, Johnson DA, Aranson JT (2003) Direct shoot regeneration from leaf segments of mature plants of Echinacea purpurea L. In Vitro Cell Dev Biol Plant 39:505–509

    Google Scholar 

  • Merali S, Binns S, Paulin-Levasseur M, Ficker C, Smith M, Baum B, Brovelli E, Arnason JT (2003) Antifungal and anti-inflammatory activity of the genus Echinacea. Pharm Biol 41(6):412–420

    Article  CAS  Google Scholar 

  • Miller RA (2000) Echinacea 2000: technical crop report. Otto Richter and Sons Limited, Goodwood, ON

    Google Scholar 

  • Mistrikova I, Vaverkova S (2006) Echinacea—chemical composition, immunostimulatory activities and uses. Thaiszia J Bot 16:11–26

    Google Scholar 

  • Mølgaard P, Johnsen S, Christensen P, Cornett C (2003) HPLC method validated for the simultaneous analysis of cichoric acid and alkamides in Echinacea purpurea plants and products. J Agric Food Chem 51(24):6922–6933

    Article  PubMed  Google Scholar 

  • Mudge E, Lopes-Lutz D, Brown P, Schieber A (2011) Analysis of alkylamides in Echinacea plant materials and dietary supplements by ultrafast liquid chromatography with diode array and mass spectrometric detection. J Agric Food Chem 59(15):8086–8094

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Peiris SE, Shi WL, Zobayed SMA, Saxena PK (2006) Genetic diversity in seed populations of Echinacea purpurea controls the capacity for regeneration, route of morphogenesis and phytochemical composition. Plant Cell Rep 25(6):522–532

    Article  CAS  PubMed  Google Scholar 

  • Murthy HN, Kim Y-S, Park S-Y, Paek K-Y (2014) Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species. Appl Microbiol Biotechnol 98(18):7707–7717

    Article  CAS  PubMed  Google Scholar 

  • Nadaf M, Joharchi M, Amiri MS (2019) Ethnomedicinal uses of plants for the treatment of nervous disorders at the herbal markets of Bojnord, North Khorasan Province, Iran. Avicenna J Phytomed 9(2):153

    PubMed  PubMed Central  Google Scholar 

  • Pan ZG, Liu CZ, Zobayed SMA, Saxena PK (2004) Plant regeneration from mesophyll protoplasts of Echinacea purpurea. Plant Cell Tissue Organ Cult 77(3):251–255

    Article  CAS  Google Scholar 

  • Patel T, Crouch A, Dowless K, Freier D (2008) 122. Acute effects of oral administration of a glycerol extract of Echinacea purpurea on peritoneal exudate cells in female swiss mice. Brain Behav Immun 4(22):39

    Article  Google Scholar 

  • Pellati F, Benvenuti S, Magro L, Melegari M, Soragni F (2004) Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J Pharm Biomed Anal 35(2):289–301

    Article  CAS  PubMed  Google Scholar 

  • Pires C, Martins N, Carvalho AM, Barros L, Ferreira ICFR (2016) Phytopharmacologic preparations as predictors of plant bioactivity: a particular approach to Echinacea purpurea (L.) Moench antioxidant properties. Nutrition 32(7–8):834–839

    Article  CAS  PubMed  Google Scholar 

  • Randolph RK, Gellenbeck K, Stonebrook K, Brovelli E, Qian Y, Bankaitis-Davis D, Cheronis J (2003) Regulation of human immune gene expression as influenced by a commercial blended Echinacea product: preliminary studies. Exp Biol Med 228(9):1051–1056

    Article  CAS  Google Scholar 

  • Rininger JA, Kickner S, Chigurupati P, McLean A, Franck Z (2000) Immunopharmacological activity of Echinacea preparations following simulated digestion on murine macrophages and human peripheral blood mononuclear cells. J Leukoc Biol 68(4):503–510

    Article  CAS  PubMed  Google Scholar 

  • Rios MY, Olivo HF (2014) Natural and synthetic alkamides: applications in pain therapy. Stud Nat Prod Chem 43:79–121

    Article  CAS  Google Scholar 

  • Sánchez-Moreno C, Jiménez-Escrig A, Saura-Calixto F (2000) Study of low-density lipoprotein oxidizability indexes to measure the antioxidant activity of dietary polyphenols. Nutr Res 20(7):941–953

    Article  Google Scholar 

  • Sauve RJ, Mmbaga MT, Zhou S (2004) In vitro regeneration of the Tennessee coneflower (Echinacea tennesseensis). In Vitro Cell Dev Biol-Plant 40(3):325–328

    Article  CAS  Google Scholar 

  • Sayre LE (1903) Echinacea roots. Trans Kansas Acad Sci 19:209–213

    Article  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085S

    Article  CAS  PubMed  Google Scholar 

  • Schumacher A, Friedberg KD (1991) Untersuchungen zur Wirkung von Echinacea angustifolia auf die unspezifische zelluläre Immunantwort der Maus. Arzneimittelforschung 41(2):141–147

    CAS  PubMed  Google Scholar 

  • Senica M, Mlinsek G, Veberic R, Mikulic-Petkovsek M (2019) Which plant part of purple coneflower (Echinacea purpurea (L.) Moench) should be used for tea and which for tincture? J Med Food 22(1):102–108

    Article  CAS  PubMed  Google Scholar 

  • Shariatinia Z (2019) Pharmaceutical applications of natural polysaccharides. In: Natural polysaccharides in drug delivery and biomedical applications. Elsevier, pp 15–57

    Chapter  Google Scholar 

  • Sharif KOM, Tufekci EF, Ustaoglu B, Altunoglu YC, Zengin G, Llorent-Martínez EJ, Guney K, Baloglu MC (2021) Anticancer and biological properties of leaf and flower extracts of Echinacea purpurea (L.) Moench. Food Biosci 41:101005

    Article  Google Scholar 

  • Sharma SM, Anderson M, Schoop SR, Hudson JB (2010) Bactericidal and anti-inflammatory properties of a standardized Echinacea extract (Echinaforce®): dual actions against respiratory bacteria. Phytomedicine 17(8–9):563–568

    Article  CAS  PubMed  Google Scholar 

  • Silva T, Oliveira C, Borges F (2014) Caffeic acid derivatives, analogs and applications: a patent review (2009–2013). Expert Opin Ther Pat 24(11):1257–1270

    Article  CAS  PubMed  Google Scholar 

  • Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM (2021) Progress in bioactive polysaccharide-derivatives: a review. Food Rev Intl 39:1–16

    Google Scholar 

  • Spagnol CM, Isaac VLB, Corrêa MA, Salgado HRN (2016) Validation of HPLC–UV assay of caffeic acid in emulsions. J Chromatogr Sci 54(3):305–311

    CAS  PubMed  Google Scholar 

  • Speroni E, Govoni P, Guizzardi S, Renzulli C, Guerra MC (2002) Anti-inflammatory and cicatrizing activity of Echinacea pallida Nutt. root extract. J Ethnopharmacol 79(2):265–272

    Article  CAS  PubMed  Google Scholar 

  • Starman TW, Cerny TA, MacKenzie AJ (1995) Productivity and profitability of some field-grown specialty cut flowers. HortScience 30(6):1217–1220

    Article  Google Scholar 

  • Stimpel M, Proksch A, Wagner H, Lohmann-Matthes ML (1984) Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea. Infect Immun 46(3):845–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thygesen L, Thulin J, Mortensen A, Skibsted LH, Molgaard P (2007) Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chem 101(1):74–81

    Article  CAS  Google Scholar 

  • Tošović J (2017) Spectroscopic features of caffeic acid: theoretical study. Kragujevac J Sci 39:99–108

    Article  Google Scholar 

  • Tsai Y-L, Chiou S-Y, Chan K-C, Sung J-M, Lin S-D (2012) Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. LWT-Food Sci Technol 46(1):169–176

    Article  CAS  Google Scholar 

  • Verma RP, Hansch C (2004) An approach towards the quantitative structure–activity relationships of caffeic acid and its derivatives. Chembiochem 5(9):1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Vinson JA, Teufel K, Wu N (2001) Red wine, dealcoholized red wine, and especially grape juice, inhibit atherosclerosis in a hamster model. Atherosclerosis 156(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Vickers A (2002) Botanical medicines for the treatment of cancer: rationale, overview of current data, and methodological considerations for phase I and II trials. Cancer Investig 20(7–8):1069–1079

    Article  Google Scholar 

  • Voaden DJ, Jacobson M (1972) Tumor inhibitors. 3. Identification and synthesis of an oncolytic hydrocarbon from American coneflower roots. J Med Chem 15(6):619–623

    Article  CAS  PubMed  Google Scholar 

  • Wang HM, To KY (2004) Agrobacterium-mediated transformation in the high value medicinal plant Echinacea purpurea. Plant Sci 166:1087–1096

    Google Scholar 

  • Woelkart K, Bauer R (2007) The role of alkamides as an active principle of Echinacea. Planta Med 73(07):615–623

    Article  CAS  PubMed  Google Scholar 

  • Xie J-H, Jin M-L, Morris GA, Zha X-Q, Chen H-Q, Yi Y, Li J-E, Wang Z-J, Gao J, Nie S-P (2016) Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr 56(sup1):S60–S84

    Article  CAS  PubMed  Google Scholar 

  • Xing XX, Liu ZJ, Han B (2011) Effects of Acteoside and Echinacoside on the expression of the BMP2 in rat Osteoblast. Prog Vet Med 32:45–48

    Google Scholar 

  • Yalpani M (1985) A survey of recent advances in selective chemical and enzymic polysaccharide modifications. Tetrahedron 41(15):2957–3020

    Article  CAS  Google Scholar 

  • Yao L, Bai L, Tan Y, Sun J, Qu Q, Shi D, Guo S, Liu C (2019) The immunoregulatory effect of sulfated Echinacea purpurea polysaccharide on chicken bone marrow-derived dendritic cells. Int J Biol Macromol 139:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Shen M, Song Q, Xie J (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 183:91–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Tang Y, Li N-G, Zhu Y, Duan J-A (2014) Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 19(10):16458–16476

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F-C, Nilanthi D, Yang Y-S, Wu H (2006) Anther culture and haploid plant regeneration in purple coneflower (Echinacea purpurea L.). Plant Cell Tissue Organ Cult 86(1):55–62

    Article  Google Scholar 

  • Zheng Y, Dixon M, Saxena PK (2006) Growing environment and nutrient availability affect the content of some phenolic compounds in Echinacea purpurea and Echinacea angustifolia. Planta Med 72(15):1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Zobayed SMA, Saxena PK (2003) In vitro regeneration of Echinacea purpurea L: enhancement of somatic embryogenesis by indolebutyric acid and dark pre-incubation. In Vitro Cell Dev Biol-Plant 39(6):605–612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saema, S., Laiq-Ur-Rahman, Shaheen, N., Pandey, V. (2023). Immunostimulatory Properties of Echinacea purpurea and Conservation Strategy. In: Mishra, M.K., Kumari, N. (eds) Plants for Immunity and Conservation Strategies. Springer, Singapore. https://doi.org/10.1007/978-981-99-2824-8_10

Download citation

Publish with us

Policies and ethics