Skip to main content

Design of Efficient Distributed Energy Resources (DER) Controller and Protection System

  • Chapter
  • First Online:
Optimal Planning and Operation of Distributed Energy Resources

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

  • 113 Accesses

Abstract

This chapter presents the design of efficient controllers and protection systems for distributed energy resources (DERs)-based microgrids. The control strategies for DERs include decentralized, centralized, and hierarchical controllers. These controllers have been designed based on a robust extended linear quadratic Gaussian (LQG) control, which combines the Kalman estimator with the linear quadratic regulator with prescribed degree of stability (LQRPDS). Finally, this chapter demonstrates the validation of the design procedure of the DER controllers using eigenvalue analysis, offline time-domain simulations, and RTDS-based simulations. Moreover, various protection systems for DERs-based microgrids have been discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baghaee HR, Mirsalim M, Gharehpetian GB (2016) Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids. IEEE Trans Emerg Sel Topics Power Electron 04(4):1217–1225

    Article  Google Scholar 

  • Bottrell N, Prodanovic M, Green T (2013) Dynamic stability of a microgrid with an active load. IEEE Trans Power Electron 28(11):5107–5119

    Article  Google Scholar 

  • Chen Y, Atherton DP et al (2007) Linear feedback control: analysis and design with MATLAB. SIAM, USA

    MATH  Google Scholar 

  • Choudhury S (2022) Review of energy storage system technologies integration to microgrid: types, control strategies, issues, and future prospects. J Energy Storage 48:130966

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 06(2):182–197

    Article  Google Scholar 

  • Franklin GF, Powell JD, ML Workman ML (1990) Digital control of dynamic systems, 2nd edn. Addison-Wesley

    Google Scholar 

  • Golsorkhi MS, Lu DDC (2015) A control method for inverter-based islanded microgrids based on VI droop characteristics. IEEE Trans Power Del 30(3):1196–1204

    Article  Google Scholar 

  • Guo F, Wen C, Mao J, Song YD (2015) Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Trans Ind Electron 62(7):4355–4364

    Article  Google Scholar 

  • Ishaq S et al (2022) A review on recent developments in control and optimization of micro grids. Energy Rep 8:4085–4103

    Article  Google Scholar 

  • Kahrobaeian A, Mohamed YA-RI (2014) Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE Trans Ind Electron 61(4):1643–1658

    Article  Google Scholar 

  • Kent M, Schmus W, McCrackin F, Wheeler L (1969) Dynamic modelling of loads in stability studies. IEEE Trans Power App Syst PAS-88(5):756–763

    Google Scholar 

  • Kundur P et al (2004) Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans Power Syst 19(3):1387–1401

    Article  Google Scholar 

  • Liang H, Choi BJ, Zhuang W, Shen X (2013) Stability enhancement of decentralized inverter control through wireless communications in microgrids. IEEE Trans Smart Grid 4(1):321–331

    Article  Google Scholar 

  • Li Z, Zang C, Zeng P, Yu H, Li S (2018) Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids. IEEE Trans Ind Inf 14(2):679–690

    Article  Google Scholar 

  • Lou G et al (2017) Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids. IEEE Trans Sustain Energy 08(02):792–804

    Article  Google Scholar 

  • Majumder R (2010) Some aspects of stability in microgrids. IEEE Trans Power Syst 28(3):3242–3253

    Google Scholar 

  • Muhtadi A et al (2021) Distributed energy resources based microgrid: review of architecture, control, and reliability. IEEE Trans Ind Appl 57(03):2223–2235

    Article  Google Scholar 

  • Ovalle A, Ramos G, Bacha S, Hably A, Rumeau A (2015) Decentralized control of voltage source converters in microgrids based on the application of instantaneous power theory. IEEE Trans Ind Electron 62(2):1152–1162

    Article  Google Scholar 

  • Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based MG. IEEE Trans Power Electron 22(2):613–625

    Article  Google Scholar 

  • Raju PESN, Jain T (2013) Hybrid AC/DC micro grid: an overview. In: Fifth international conference on power and energy systems

    Google Scholar 

  • Raju PESN, Jain T (2017) Optimal decentralized supplementary inverter control loop to mitigate instability in an islanded microgrid with active and passive loads. Int J Emerg Electr Power Syst 18(01)

    Google Scholar 

  • Raju PESN, Jain T (2017) Robust optimal centralized controller to mitigate the small signal instability in an islanded inverter based microgrid with active and passive loads. Int J Electr Power Energy Syst 90:225–236

    Article  Google Scholar 

  • Raju PESN, Jain T (2018) Impact of load dynamics and load sharing among distributed generations on stability and dynamic performance of islanded AC microgrids. Electric Power Syst Res 157:200–210

    Article  Google Scholar 

  • Raju PESN, Jain T (2019) A two-level hierarchical controller to enhance stability and dynamic performance of islanded inverter-based microgrids with static and dynamic loads. IEEE Trans Ind Inf 15(5):2786–2797

    Article  Google Scholar 

  • Raju PESN, Jain T (2019) Development and validation of a generalized modeling approach for islanded inverter-based microgrids with static and dynamic loads. Int J Electr Power Energy Syst 108:177–190

    Article  Google Scholar 

  • Reno M et al (2021) Influence of inverter-based resources on microgrid protection: Part 1: Microgrids in radial distribution systems. IEEE Power Energy Mag 19(3):36–46

    Article  Google Scholar 

  • Rezaei N, Uddin M (2021) An analytical review on state-of-the-art microgrid protective relaying and coordination techniques. IEEE Trans Ind Appl 57(3):2258–2273

    Article  Google Scholar 

  • Ropp M, Reno M (2021) Influence of inverter-based resources on microgrid protection: Part 2: Secondary networks and microgrid protection. IEEE Power Energy Mag 19(3):47–57

    Article  Google Scholar 

  • Safonov MG, Chiang RY (1989) A Schur method for balanced model reduction. IEEE Trans Autom Control 34(7):729–733

    Article  MathSciNet  MATH  Google Scholar 

  • Sanjari MJ, Gharehpetian GB (2013) Small signal stability based fuzzy potential function proposal for secondary frequency and voltage control of islanded microgrid. Electr Power Compon Syst 41(05):485–499

    Article  Google Scholar 

  • Taboada H, Coit D (2005) Post-Pareto optimality analysis to efficiently identify promising solutions for multi-objective problems. Rutgers University ISE Working

    Google Scholar 

  • Tan KT, Peng XY, So PL (2012) Centralized control for parallel operation of distributed generation inverters in microgrids. IEEE Trans Smart Grid 3(4):1977–1987

    Article  Google Scholar 

  • Tsikalakis AG, Hatziargyriou ND (2008) Centralized control for optimizing microgrids operation. IEEE Trans Energy Convers 23(1):241–248

    Article  Google Scholar 

  • Ustun TS, Ozansoy C, Zayegh, A Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420. IEEE Trans Power Syst 27(3):1560–1567

    Google Scholar 

  • Wang Y, Wang X, Chen Z, Blaabjerg F (2017) Distributed optimal control of reactive power and voltage in islanded microgrids. IEEE Trans Ind Electron 53(01):340–349

    Google Scholar 

  • Yassami H, Darabi A, Rafiei SMR (2010) Power system stabilizer design using Strength Pareto multi-objective optimization approach. Electr Power Syst Res 80(7):838–846

    Article  Google Scholar 

  • Yu K, Ai Q, Wang S, Ni J, Lv T (2016) Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model. IEEE Trans Smart Grid 7(2):695–705

    Google Scholar 

  • Zhao Z, Yang P, Guerrero JM, Xu Z, Green TC (2016) Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Trans Power Electron 31(8):5974–5991

    Article  Google Scholar 

  • Zolotas AC, Chaudhuri B, Jaimoukha IM, Korba P (2007) A study on LQG/LTR control for damping inter-area oscillations in power systems. IEEE Trans Control Syst Tech 15(1):151–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. S. N. Raju .

Editor information

Editors and Affiliations

Appendix

Appendix

IIDER Units Ratings: \(\text {IIDER}_1\) − (10 + j6) kVA; \(\text {IIDER}_2\) − (15 + j9) kVA; \(\text {IIDER}_3\) 0− (20 + j12) kVA; \(\text {IIDER}_4\) − (25 + j15) kVA. Static Active and Reactive Power Droop Gains: m \(_{\text {P}1}\) = 6.28e − 4 rad/s/W, m \(_{\text {P}2}\) = 4.18e − 4 rad/s/W, m \(_{\text {P}3}\) = 3.14e − 4 rad/s/W, m \(_{P4}\) = 2.52e − 4, n \(_{\text {Q}1}\) = 1.66e − 3 V/VAR, n \(_{\text {Q}2}\) = 1.11e − 3 V/VAR, n \(_{\text {Q}3}\) = 8.33e − 4 V/VAR and n \(_{\text {Q}4}\) = 6.66e − 4 V/VAR. IIDER unit Parameters: L \(_{f}\) = 1.35 mH, C \(_{\text {f}}\) = 50 \(\upmu {}\)F, R \(_{\text {f}}\) = 0.1 \(\Omega {}\), f \(_{\text {sw}}\) = 8 kHz, w \(_{c}\)=31.41 rad/s, K \(_{\text {pv}}\) = 0.05, K \(_{\text {iv}}\) = 390, K \(_{\text {pi}}\) = 10.5, K \(_{\text {ii}}\) = 16e3, F = 0.75, f \(_{\text {nl}}\) = 50.5 Hz, R \(_{\text {c}}\) = 0.03 \(\Omega {}\), L \(_{\text {c}}\) = 0.35 mH. RIAL Parameters: L \(_{\text {f}}\) = 2.3 mH, C \(_{\text {f}}\) = 8.8 \(\upmu {}\)F, R \(_{\text {f}}\) = 0.1 \(\Omega {}\), f \(_{\text {sw}}\) = 10 kHz, w \(_{\text {c}}\) = 31.41 rad/s, K \(_{\text {pv}}\) = 0.5, K \(_{\text {iv}}\) = 150, K \(_{\text {pi}}\) = 7, K \(_{\text {ii}}\) = 25e3, R \(_{\text {c}}\) = 0.03 \(\Omega {}\), L \(_{\text {c}}\) = 0.93 mH. Line Parameters: Line 1: (0.23 + j0.11) \(\Omega {}\), Line 2: (0.35 + j0.58) \(\Omega {}\), Line 3: (0.30 + j0.47) \(\Omega {}\). Load Parameters: Induction Motor Load: 10 HP, 400 V, 50 Hz, \(r_{\text {s}}\,=\,0.7834 \, \Omega \), \(L_{\text {ss}}\,=\,127.1\,\text {mH}\), \(r_{\text {r}}\,=\,7402 \, \Omega \), \(L_{\text {rr}} = 127.1 \, \text {mH}\), \(L_{\text {m}}= 124.1 \, \text {mH}\), P = 4, \(T_{\text {L}}\,=\,47.75\) Nm; \(\text {CPL}\): 12 kVA, r \(_{\text {CPL}}\) = 13.224 \(\Omega {}\)/phase and cos \(\alpha {}\) = 0.85; \(\text {RIAL}\): 12 kW and R\(_{\text {RIAL}}\) = 40.833 \(\Omega {}\); R Load: 25 kW, R\(R_{\text {Load}}\) = 6.347 \(\Omega {}\)/phase and \(V_{\text {DC}}=700 \, \text {V}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raju, P.E.S.N., Jain, T. (2023). Design of Efficient Distributed Energy Resources (DER) Controller and Protection System. In: Singh, S.N., Jain, N., Agarwal, U., Kumawat, M. (eds) Optimal Planning and Operation of Distributed Energy Resources. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-2800-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2800-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2799-9

  • Online ISBN: 978-981-99-2800-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics