Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 335))

  • 157 Accesses

Abstract

In this chapter, the damage evolution law and fatigue life prediction models are proposed for NiTi SMAs by addressing their superelasticity and shape memory effect, respectively. The proposed damage evolution law considered the damage coming from the microcrack orientation, propagation, martensite transformation, and martensite reorientation, and then reasonably reflected the damage accumulation process under the uniaxial, torsional, and multiaxial cyclic loadings. Moreover, the fatigue life prediction models based on the damage evolution law are also proposed, the predictive results for the uniaxial and multiaxial fatigue tests are all located within twice error band, and the accuracy of such models is much higher than those of the semiempirical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378(1–2), 24–33 (2004)

    Google Scholar 

  2. J.M. Mahtabi, N. Shamsaei, R.M. Mitchell, Fatigue of nitinol: the state-of-the-art and ongoing challenges. J. Mech. Behav. Biomed. Mater. 50, 228–254 (2015)

    Article  CAS  Google Scholar 

  3. G.Z. Kang, D. Song, Review on structural fatigue of NiTi shape memory alloys: pure mechanical and thermo-mechanical ones. Theor. Appl. Mech. Lett. 5(6), 245–254 (2015)

    Article  Google Scholar 

  4. C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, A. Tuissi, Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach. Smart Mater. Struct. 21(11), 112001 (2012)

    Article  Google Scholar 

  5. C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, A. Tuissi, Fatigue properties of a pseudoelastic NiTi alloy: strain ratcheting and hysteresis under cyclic tensile loading. Int. J. Fatigue 66, 78–85 (2014)

    Article  CAS  Google Scholar 

  6. Z. Moumni, A. Van Herpen, P. Riberty, Fatigue analysis of shape memory alloys: energy approach. Smart Mater. Struct. 14(5), S287 (2005)

    Article  Google Scholar 

  7. Q. Kan, G. Kang, W. Yan, Y. Dong, C. Yu, An energy-based fatigue failure model for super-elastic NiTi alloys under pure mechanical cyclic loading, in Third International Conference on Smart Materials and Nanotechnology in Engineering. SPIE, vol. 8409 (2012), pp. 129–136

    Google Scholar 

  8. G.Z. Kang, Q.H. Kan, C. Yu, D. Song, Y.J. Liu, Whole-life transformation ratchetting and fatigue of super-elastic NiTi alloy under uniaxial stress-controlled cyclic loading. Mater. Sci. Eng. A. 535, 228–234 (2012)

    Google Scholar 

  9. D. Song, G. Kang, Q. Kan, C. Yu, C. Zhang, Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes. Smart Mater. Struct. 25, 085007 (2015)

    Article  Google Scholar 

  10. D. Song, G. Kang, C. Yu, Q. Kan, C. Zhang, Non-proportional multiaxial fatigue of super-elastic NiTi shape memory alloy micro-tubes: damage evolution and life-prediction models. Int. J. Mech. Sci. 131–132, 325–333 (2017)

    Article  Google Scholar 

  11. R.P. Skelton, Energy criterion for high temperature low cycle fatigue failure. Mater. Sci. Technol. 7(5), 427–440 (1991)

    Article  CAS  Google Scholar 

  12. E. Charkaluk, A. Bignonnet, A. Constantinescu, K. Van Dang, Fatigue design of structures under thermomechanical loadings. Fatigue Fract. Eng. Mater. Struct. 25(12), 1199–1206 (2002)

    Article  Google Scholar 

  13. R.P. Skelton, T. Vilhelmsen, G.A. Webster, Energy criteria and cumulative damage during fatigue crack growth. Int. J. Fatigue 20(9), 641–649 (1998)

    Article  CAS  Google Scholar 

  14. D. Song, G. Kang, Q. Kan, C. Yu, C. Zhang, Non-proportional multiaxial whole-life transformation ratchetting and fatigue failure of super-elastic NiTi shape memory alloy micro-tubes. Int. J. Fatigue 80, 372–380 (2015)

    Article  CAS  Google Scholar 

  15. T. Zhao, G. Kang, Fatigue life prediction for NiTi shape memory alloy micro-tubes under uniaxial stress-controlled one-way shape memory cyclic loading. Acta Mech. Solida Sin. 35(1), 15–25 (2022)

    Article  Google Scholar 

  16. T.X. Zhao, G.Z. Kang, Experimental study and life prediction on fatigue failure of NiTi shape memory alloy under multiaxial one-way shape memory cyclic loadings. Int. J. Fatigue 155, 106609 (2022)

    Article  CAS  Google Scholar 

  17. M.V. Borodii, V.A. Strizhalo, Analysis of the experimental data on a low cycle fatigue under nonproportional straining. Int. J. Fatigue 22(4), 275–282 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Kang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, G., Yu, C., Kan, Q. (2023). Fatigue Life-Prediction Models of NiTi SMAs. In: Thermo-Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys. Springer Series in Materials Science, vol 335. Springer, Singapore. https://doi.org/10.1007/978-981-99-2752-4_7

Download citation

Publish with us

Policies and ethics