Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 335))

  • 155 Accesses

Abstract

In this chapter, the crystal plasticity-based constitutive models are proposed to describe the cyclic deformation of NiTi SMAs and its rate-dependence. The proposed models are firstly constructed for single crystals by considering different inelastic deformation mechanisms. Meanwhile, the thermo-mechanical coupling nature of rate-dependent cyclic deformation is addressed by considering the competition between the internal heat production and heat transfer to the ambient media. By employing an explicit scale transition rule, the proposed single crystal model is extended into the polycrystalline version, and then the rate-dependent cyclic deformation of NiTi SMAs are reasonably described by the proposed polycrystalline model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Gall, H. Sehitoglu, The role of texture in tension–compression asymmetry in polycrystalline NiTi. Int. J. Plast. 15(1), 69–92 (1999)

    Article  CAS  Google Scholar 

  2. K. Gall, T.J. Lim, D.L. McDowell, H. Sehitoglu, Y.I. Chumlyakov, The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi. Int. J. Plast. 16(10–11), 1189–1214 (2000)

    Article  CAS  Google Scholar 

  3. L. Anand, M.E. Gurtin, Thermal effects in the superelasticity of crystalline shape-memory materials. J. Mech. Phys. Solids 51(6), 1015–1058 (2003)

    Article  CAS  Google Scholar 

  4. E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao, Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38(5), 391–429 (2006)

    Article  Google Scholar 

  5. P. Thamburaja, H. Pan, F.S. Chau, Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet. Acta Mater. 53(14), 3821–3831 (2005)

    Article  CAS  Google Scholar 

  6. P. Thamburaja, H. Pan, F.S. Chau, The evolution of microstructure during twinning: constitutive equations, finite-element simulations and experimental verification. Int. J. Plast. 25(11), 2141–2168 (2009)

    Article  CAS  Google Scholar 

  7. G.Z. Kang, Q.H. Kan, Cyclic Plasticity of Engineering Materials: Experiments and Models (Wiley, New York, 2017)

    Book  Google Scholar 

  8. C. Yu, G. Kang, D. Song, Q. Kan, Micromechanical constitutive model considering plasticity for super-elastic NiTi shape memory alloy. Comput. Mater. Sci. 56, 1–5 (2012)

    Article  CAS  Google Scholar 

  9. C. Yu, G. Kang, Q. Kan, Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation. Int. J. Plast. 54, 132–162 (2014)

    Article  CAS  Google Scholar 

  10. C. Yu, G. Kang, D. Song, Q. Kan, Effect of martensite reorientation and reorientation-induced plasticity on multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: new consideration in constitutive model. Int. J. Plast. 67, 69–101 (2015)

    Article  CAS  Google Scholar 

  11. L. Qian, Q. Sun, X. Xiao, Role of phase transition in the unusual microwear behavior of superelastic NiTi shape memory alloy. Wear 260(4–5), 509–522 (2006)

    Article  CAS  Google Scholar 

  12. X.M. Wang, B.X. Xu, Z.F. Yue, Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys. Int. J. Plast. 24, 1307–1332 (2008)

    Article  CAS  Google Scholar 

  13. R. Hill, A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  14. G. Cailletaud, P. Pilvin, Utilisation de modèles polycristallins pour le calcul par éléments finis. Rev. Eur. Élém. Fin. 3(4), 515–541 (1994)

    Google Scholar 

  15. B.K.D. Gairola, E. Kröner, A simple formula for calculating the bounds and the self-consistent value of the shear modulus of a polycrystalline aggregate of cubic crystals. Int. J. Eng. Sci. 19(6), 865–869 (1981)

    Article  Google Scholar 

  16. P. Thamburaja, Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids 53(4), 825–856 (2015)

    Article  Google Scholar 

  17. K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511–678 (2005)

    Article  CAS  Google Scholar 

  18. D.C. Lagoudas, P.B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech. Mater. 36(9), 865–892 (2004)

    Google Scholar 

  19. G. Kang, Q. Kan, L. Qian, Y. Liu, Ratchetting deformation of super-elastic and shape-memory NiTi alloys. Mech. Mater. 41(2), 139–153 (2009)

    Article  Google Scholar 

  20. Y. Liu, Z. Xie, J.V. Humbeeck, L. Delaey, Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Mater. 46(12), 4325–4338 (1998)

    Article  CAS  Google Scholar 

  21. Z. Xie, Y. Liu, J.V. Humbeeck, Microstructure of NiTi shape memory alloy due to tension-compression cyclic deformation. Acta Mater. 46(6), 1989–2000 (1998)

    Article  CAS  Google Scholar 

  22. D. Song, G. Kang, Q. Kan, C. Yu, C. Zhang, Non-proportional multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: experimental observations. Mech. Mater. 70, 94–105 (2014)

    Article  Google Scholar 

  23. C. Yu, G. Kang, Q. Kan, Study on the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy based on a new crystal plasticity constitutive model. Int. J. Solids Struct. 51(25–26), 4386–4405 (2014)

    Article  CAS  Google Scholar 

  24. C. Morin, Z. Moumni, W. Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plast. 27(12), 1959–1980 (2011)

    Article  CAS  Google Scholar 

  25. G.Z. Kang, Q.H. Kan, C. Yu, D. Song, Y.J. Liu, Whole-life transformation ratchetting and fatigue of super-elastic NiTi alloy under uniaxial stress-controlled cyclic loading. Mater. Sci. Eng. A. 535, 228–234 (2012)

    Google Scholar 

  26. F.A. Nae, Y. Matsuzaki, T. Ikeda, Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling. Smart Mater. Struct. 12(1), 6 (2002)

    Article  Google Scholar 

  27. S. Zhu, Y. Zhang, A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence. Smart Mater. Struct. 16(5), 1696 (2007)

    Article  CAS  Google Scholar 

  28. Y.J. He, Q.P. Sun, Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading. Smart Mater. Struct. 19(11), 115014 (2010)

    Article  Google Scholar 

  29. Y.J. He, Q.P. Sun, On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. Int. J. Solids Struct. 48(11), 1688–1695 (2011)

    Article  CAS  Google Scholar 

  30. H. Yin, Q. Sun, Temperature variation in NiTi shape memory alloy during cyclic phase transition. J. Mater. Eng. Perform. 21(12), 2505–2508 (2012)

    Article  CAS  Google Scholar 

  31. H. Yin, Y. He, Q. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J. Mech. Phys. Solids 67, 100–128 (2014)

    Article  CAS  Google Scholar 

  32. J.A. Shaw, S. Kyriakides, Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8), 1243–1281 (1995)

    Article  CAS  Google Scholar 

  33. Q.P. Sun, Z. Li, Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion––from localization to homogeneous deformation. Int. J. Solids Struct. 39(13–14), 3797–3809 (2002)

    Article  Google Scholar 

  34. X. Zhang, P. Feng, Y. He, T. Yu, Q.P. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. Int. J. Mech. Sci. 52(12), 1660–1670 (2010)

    Article  Google Scholar 

  35. W. Zaki, Z. Moumni, A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55(11), 2455–2490 (2007)

    Article  CAS  Google Scholar 

  36. Q.P. Sun, H. Zhao, R. Zhou, D. Saletti, H. Yin, Recent advances in spatiotemporal evolution of thermomechanical fields during the solid–solid phase transition. C.R. Mecanique 340(4), 349–358 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Kang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, G., Yu, C., Kan, Q. (2023). Crystal Plasticity-Based Constitutive Models of NiTi SMAs. In: Thermo-Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys. Springer Series in Materials Science, vol 335. Springer, Singapore. https://doi.org/10.1007/978-981-99-2752-4_6

Download citation

Publish with us

Policies and ethics