Skip to main content

Molecular Dynamics Simulations on Thermo-Mechanically Coupled Cyclic Deformation of NiTi SMAs

  • Chapter
  • First Online:
Thermo-Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 335))

  • 154 Accesses

Abstract

In this chapter, the molecular dynamics (MD) simulations on the thermo-mechanically coupled cyclic deformation of NiTi SMA single crystal and polycrystalline aggregates are performed, the microscopic mechanisms of the cyclic degradations of super-elasticity and one-way shape memory effect are clarified, which are very useful in constructing related constitutive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Cisse, W. Zaki, T.B. Zineb, A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 76, 244–284 (2016)

    Article  CAS  Google Scholar 

  2. G.Z. Kang, Q.H. Kan, Cyclic Plasticity of Engineering Materials: Experiments and Models (Wiley, New York, 2017)

    Book  Google Scholar 

  3. O. Kastner, First Principles Modelling of Shape Memory Alloys: Molecular Dynamics Simulations (Springer, Berlin Heidelberg, 2012)

    Book  Google Scholar 

  4. B. Wang, G.Z. Kang, Q.H. Kan, K. Zhou, C. Yu, Molecular dynamics simulations to the pseudo-elasticity of NiTi shape memory alloy nano-pillar subjected to cyclic compression. Comput. Mater. Sci. 131, 132–138 (2017)

    Article  CAS  Google Scholar 

  5. B. Wang, G.Z. Kang, Q.H. Kan, K. Zhou, C. Yu, Atomistic study on the super-elasticity of single crystal bulk NiTi shape memory alloy under adiabatic condition. Comput. Mater. Sci. 142, 38–46 (2018)

    Article  CAS  Google Scholar 

  6. B. Wang, G.Z. Kang, Q.H. Kan, W.P. Wu, K. Zhou, C. Yu, Atomistic study on the super-elasticity of nanocrystalline NiTi shape memory alloy subjected to a cyclic deformation. Comput. Mater. Sci. 152, 85–92 (2018)

    Article  Google Scholar 

  7. B. Wang, G.Z. Kang, W.P. Wu, K. Zhou, Q.H. Kan, C. Yu, Transformation ratchetting of nanocrystalline super-elastic NiTi shape memory alloy and its atomic mechanism from molecular dynamics simulations. Int. J. Plast. 125, 374–394 (2020)

    Article  CAS  Google Scholar 

  8. Y. Zhong, K. Gall, T. Zhu, Atomistic study of nanotwins in NiTi shape memory alloys. J. Appl. Phys. 110(3), 033532 (2011)

    Article  Google Scholar 

  9. Y. Zhong, K. Gall, T. Zhu, Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars. Acta Mater. 60(18), 6301–6311 (2012)

    Article  CAS  Google Scholar 

  10. W.S. Ko, B. Grabowski, J. Neugebauer, Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Phys. Rev. B 92(13), 134107 (2015)

    Article  Google Scholar 

  11. W.S. Ko, S.B. Maisel, B. Grabowski, Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater. 123, 90–101 (2017)

    Article  CAS  Google Scholar 

  12. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  CAS  Google Scholar 

  13. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 2154–2162 (2010)

    Article  Google Scholar 

  14. D. Faken, H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2(2), 279–286 (1994)

    Article  CAS  Google Scholar 

  15. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  CAS  Google Scholar 

  16. H. Tsuzuki, P.S. Branicio, J.P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commun. 177(6), 518–523 (2007)

    Article  CAS  Google Scholar 

  17. Q. Yin, X. Wu, C. Huang, Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression. Philos. Mag. 95(23), 2491–2512 (2015)

    Article  CAS  Google Scholar 

  18. R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int. J. Plast. 27(2), 282–297 (2011)

    Article  CAS  Google Scholar 

  19. P. Chowdhury, L. Patriarca, G. Ren, H. Sehitoglu, Molecular dynamics modeling of NiTi superelasticity in presence of nanoprecipitates. Int. J. Plast. 81, 152–167 (2016)

    Article  CAS  Google Scholar 

  20. S. Hernandez, A. Carlos, Molecular Dynamic Simulation of Thermo-Mechanical Properties of Ultra-Thin Poly(Methyl Methacrylate) Films (Texas A&M University, 2010)

    Google Scholar 

  21. J.A. Shaw, Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy. Int. J. Plast. 16(5), 541–562 (2000)

    Article  CAS  Google Scholar 

  22. P. Feng, Q. Sun, Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J. Mech. Phys. Solids 54(8), 1568–1603 (2006)

    Article  CAS  Google Scholar 

  23. T. Waitz, T. Antretter, F.D. Fischer, Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Mater. Sci. Technol. 24(8), 934–940 (2008)

    Article  CAS  Google Scholar 

  24. A. Ahadi, Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—effects of grain size. Appl. Phys. Lett. 103(2), 021902 (2013)

    Article  Google Scholar 

  25. A. Ahadi, Q. Sun, Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 76, 186–197 (2014)

    Article  CAS  Google Scholar 

  26. A. Ahadi, Q. Sun, Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater. 90, 272–281 (2015)

    Article  CAS  Google Scholar 

  27. A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18(8), 085001 (2010)

    Article  Google Scholar 

  28. F. Shimizu, S. Ogata, J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48(11), 2923–2927 (2007)

    Article  CAS  Google Scholar 

  29. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305(5684), 654–657 (2004)

    Article  CAS  Google Scholar 

  30. J. Schiøtz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper. Science 301(5638), 1357 (2003)

    Article  Google Scholar 

  31. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3(1), 43–47 (2004)

    Article  CAS  Google Scholar 

  32. B.J. Lee, M.I. Baskes, Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62(13), 8564–8567 (2000)

    Article  CAS  Google Scholar 

  33. B.J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64(18), 184102 (2001)

    Article  Google Scholar 

  34. B.J. Lee, J.H. Shim, M.I. Baskes, Semiempirical atomic potentials for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68(14), 399–404 (2003)

    Article  Google Scholar 

  35. B.J. Lee, W.S. Ko, H.K. Kim, E.H. Kim, The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations. CALPHAD Comput. Coupling Phase Diagrams Thermochem. 34(4), 510–522 (2010)

    Google Scholar 

  36. J. Li, B. Wang, C. Yu, Q.H. Kan, G.Z. Kang, Molecular dynamics simulation on the one-way shape memory effect of single crystal NiTi alloy. Chin. J. Solid Mech. 41(02), 118–126 (2020)

    Google Scholar 

  37. B. Wang, G.Z. Kang, C. Yu, B. Gu, W.F. Yuan, Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration. Int. J. Mech. Sci. 211, 106777 (2021)

    Article  Google Scholar 

  38. T.X. Zhao, G.Z. Kang, C. Yu, Q.H. Kan, Experimental investigation on the thermo-mechanical cyclic degeneration of one-way shape memory effect of NiTi shape memory alloy. Int. J. Miner. Metall. Mater. 26(12), 1539–1550 (2019)

    Google Scholar 

  39. Y. Liu, Z. Xie, J.V. Humbeeck, L. Delaey, Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Mater. 46(12), 4325–4338 (1998)

    Article  CAS  Google Scholar 

  40. S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall. Trans. A 17, 115–120 (1986)

    Article  Google Scholar 

  41. C. Yu, G. Kang, Q. Kan, X. Xu, Physical mechanism based crystal plasticity model of NiTi shape memory alloys addressing the thermo-mechanical cyclic degeneration of shape memory effect. Mech. Mater. 112, 1–17 (2017)

    Article  Google Scholar 

  42. Y. Soejima, S. Motomura, M. Mitsuhara, T. Inamura, M. Nishida, In situ scanning electron microscopy study of the thermoelastic martensitic transformation in Ti-Ni shape memory alloy. Acta Mater. 103, 352–360 (2016)

    Article  CAS  Google Scholar 

  43. M.F. Wagner, N. Nayan, U. Ramamurty, Healing of fatigue damage in NiTi shape memory alloys. J. Phys. D Appl. Phys. 41(18), 185408 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Kang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, G., Yu, C., Kan, Q. (2023). Molecular Dynamics Simulations on Thermo-Mechanically Coupled Cyclic Deformation of NiTi SMAs. In: Thermo-Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys. Springer Series in Materials Science, vol 335. Springer, Singapore. https://doi.org/10.1007/978-981-99-2752-4_3

Download citation

Publish with us

Policies and ethics