Skip to main content

A Survey on Fault Tolerant Control of Unmanned Underwater Vehicles

  • Conference paper
  • First Online:
Artificial Intelligence and Data Science Based R&D Interventions (NERC 2022)

Abstract

Unmanned underwater vehicles have expanded their market size owing to growth in demand for underwater exploration, underwater defense vehicles, and subsea construction. High-resolution cameras, sonar technology, battery technology, better manipulators, and other advances in UUV technologies have led to reduced computational time and effort for underwater inspection and exploration. But the dynamic underwater environment like underwater currents and waves, uncertainty in the modeling of underwater vehicles, and problems of precise motion control pose a challenge to UUV control. The severity of these control challenges is increased by the presence of faults, namely, failure of thrusters, sensors, and any other equipment which may result in an incomplete mission. Fault tolerant control ensures that the system is able to achieve its intended performance with certain limits even in the presence of faults. To address the fault related stability and performance issues in UUVs, fault tolerant techniques have been studied. Fault detection and diagnosis (FDD) and control redesign form the two parts of the fault tolerant control system (FTCS). FDD deals with the fault occurrence, location, nature, and magnitude, whereas control redesign consists of fault accommodation and control reconfiguration. In this review paper, a detailed study of different faults, FDD techniques, and control redesign methods is done with respect to UUVs. Finally, the future prospects in the area of fault tolerant control are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohnen W (2008) Overview of manned underwater vehicle activity. Mar Technol Soc J 42(1):26–37

    Article  Google Scholar 

  2. Castro OAA, Gonzalez EI, Guerrero EEG, Cuautle ET, Bonilla ORL, Tiznado JEO, Valdez JRC (2019) Design and construction of an ROV for underwater exploration. Sensors 19(24):5387

    Article  Google Scholar 

  3. Berg H, Hjelmervik KT (2018) Classification of anti-submarine warfare sonar targets using a deep neural network. In: OCEANS 2018 MTS/IEEE. IEEE, Charleston, USA, pp 22–25

    Google Scholar 

  4. BlueRobotics Store. http://www.bluerobotics.com/store. Last accessed 04 July 2022

  5. McLean DL, Parsons MJG, Gates AR, Benfield MC, Bond T, Booth DJ, Bunce M, Fowler AM, Harvey ES, Macreadie PI, Pattiaratchi CB, Rouse S, Patridge JC, Thomson PG, Todd VLG, Jones DOB (2020) Enhancing the scientific value of industry remotely operated vehicles (ROVs) in our oceans. Front Mar Sci 7:1–20

    Article  Google Scholar 

  6. Salhaoui M, Molina JCM, Gonzalez AG, Arioua M, Ortiz FJ (2020) Autonomous underwater monitoring system for detecting life on the seabed by means of computer vision cloud services. Remote Sens 12(12):1–31

    Article  Google Scholar 

  7. Hagen PE, Lagstad P, Rekdal S (2007) Transitioning the HUGIN 1000-MR AUV into service in the Royal Norwegian Navy. In: UDT Europe 2007, UDT, Naples, Italy, pp 1–6

    Google Scholar 

  8. Antonelli G (2003) A survey of fault detection/tolerance strategies for AUVs and ROVs. In: Caccavale F, Villani L (eds) Fault diagnosis and fault tolerance for mechatronic systems: recent advances, vol 1. Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg, pp 109–127

    Chapter  Google Scholar 

  9. Wang X (2020) Active fault tolerant control for unmanned underwater vehicle with sensor faults. IEEE Trans Instrum Meas 69(12):9485–9495

    Article  Google Scholar 

  10. Ni L (2001) Fault-tolerant control of unmanned underwater vehicles. Doctoral dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  11. Alessandri A, Caccia M, Veruggio G (1999) Fault detection of actuator faults in unmanned underwater vehicles. Control Eng Pract 7(3):357–368

    Article  Google Scholar 

  12. Wang X, Tan CP (2019) Dynamic output feedback fault tolerant control for unmanned underwater vehicles. IEEE Trans Veh Technol 69(4):3693–3702

    Article  Google Scholar 

  13. Podder TK, Antonelli G, Sarkar N (2000) Fault tolerant control of an autonomous underwater vehicle under thruster redundancy: simulations and experiments. In: Proceedings of the 2000 IEEE international conference on robotics automation. IEEE, San Francisco, CA, USA, pp 1251–1256

    Google Scholar 

  14. Corradini ML, Monteriù A, Orlando G (2011) An actuator failure tolerant control scheme for an underwater remotely operated vehicle. IEEE Trans Control Syst Technol 19(5):1036–1046

    Article  Google Scholar 

  15. Wang Y, Zhang M, Chu Z, Liu X (2014) Fault-tolerant control based on adaptive sliding mode for underwater vehicle with thruster fault. In: 11th world congress on intelligent control and automation. IEEE, Shenyang, China, pp 5323–5328

    Google Scholar 

  16. Choi J, Kondo H, Shimizu E (2014) Thruster fault-tolerant control of a hovering AUV with four horizontal and two vertical thrusters. Adv Robot 28(4):245–256

    Article  Google Scholar 

  17. Isermann R, Balle P (1997) Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng Pract 5(5):709–719

    Article  Google Scholar 

  18. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252

    Article  Google Scholar 

  19. Ji D, Yao X, Li S, Tang Y, Tian Y (2021) Model-free fault diagnosis for autonomous underwater vehicles using sequence convolutional neural network. Ocean Eng 232:108874

    Google Scholar 

  20. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K (2003) A review of process fault detection and diagnosis: Part III: Process history based methods. Comput Chem Eng 27(3):327–346

    Article  Google Scholar 

  21. Rich SH, Venkatasubramanian V, Nasrallah M, Matteo C (1989) Development of a diagnostic expert system for a whipped toppings process. J Loss Prev Process Ind 2(3):145–154

    Article  Google Scholar 

  22. Ma D, Liang Y, Zhao X, Guan R, Shi X (2013) Multi-BP expert system for fault diagnosis of power system. Eng Appl Artif Intell 26(3):937–944

    Article  Google Scholar 

  23. Wu JD, Liu CH (2009) An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network. Expert Syst Appl 36(3):4278–4286

    Article  Google Scholar 

  24. Wu JD, Wang YH, Bai MR (2007) Development of an expert system for fault diagnosis in scooter engine platform using fuzzy-logic inference. Expert Syst Appl 33(4):1063–1075

    Article  Google Scholar 

  25. Delalleau O, Bengio Y (2011) Shallow vs. deep sum-product networks. In: Advances in neural information processing systems, vol 24. MIT Press, USA, pp 666–674

    Google Scholar 

  26. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Google Scholar 

  27. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

  28. Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211

    Article  Google Scholar 

  29. Wen L, Li X, Gao L, Zhang Y (2017) A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans Industr Electron 65(7):5990–5998

    Article  Google Scholar 

  30. Wen L, Gao L, Li X (2017) A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans Syst Man Cybern Syst 49(1):136–144

    Article  Google Scholar 

  31. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  32. Cho S, Choi M, Gao Z, Moan T (2021) Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks. Renew Energy 169:1–13

    Article  Google Scholar 

  33. Alessandri A, Caccia M, Veruggio G (1998) A model-based approach to fault diagnosis in unmanned underwater vehicles. In: IEEE oceanic engineering society. OCEANS’98. Conference proceedings (Cat. No. 98CH36259), vol 2. IEEE, France, pp 825–829

    Google Scholar 

  34. Travé-Massuyès L (2014) Bridging control and artificial intelligence theories for diagnosis: a survey. Eng Appl Artif Intell 27:1–16

    Article  Google Scholar 

  35. Alessandri A, Bruzzone G, Caccia M, Coletta P, Veruggio G (2000) Fault detection through dynamics monitoring for unmanned underwater vehicles. IFAC Proc Vol 33(11):951–956

    Article  Google Scholar 

  36. Falkenberg T, Gregersen RT, Blanke M (2014) Navigation system fault diagnosis for underwater vehicle. IFAC Proc Vol 47(3):9654–9660

    Article  Google Scholar 

  37. Niu E, Wang Q, Chaoyang D (2014) Robust fault detection and optimization for a network of unmanned vehicles with imperfect communication channels. Chin J Aeronaut 27(1):65–75

    Article  Google Scholar 

  38. Freddi A, Longhi S, Monteriù A (2013) Actuator fault detection system for a remotely operated vehicle. IFAC Proc Vol 46(33):356–361

    Article  Google Scholar 

  39. Antonelli G, Caccavale F, Sansone C, Villani L (2004) Fault diagnosis for AUVs using support vector machines. In: IEEE international conference on robotics and automation, vol 5. IEEE, USA, pp 4486–4491

    Google Scholar 

  40. Zuev A, Zhirabok A, Filaretov V (2020) Fault identification in underwater vehicle thrusters via sliding mode observers. Int J Appl Math Comput Sci 30(4):679–688

    MathSciNet  MATH  Google Scholar 

  41. Subha TD, Subash TD, Jane KC, Devadharshini D, Francis DI (2020) Autonomous under water vehicle based on extreme learning machine for sensor fault diagnosistics. Mater Today: Proc 24:2394–2402

    Article  Google Scholar 

  42. Healey AJ (1992) A neural network approach to failure diagnostics for underwater vehicles. In: Proceedings of the 1992 symposium on autonomous underwater vehicle technology. IEEE, USA, pp 131–134

    Google Scholar 

  43. Alessandri A, Caccia M, Veruggio G (1997) Model-based fault detection for unmanned underwater vehicles. IFAC Proc Vol 30(18):599–604

    Article  Google Scholar 

  44. Alessandri A, Hawkinson T, Healey AJ, Veruggio G (1999) Robust model-based fault diagnosis for unmanned underwater vehicles using sliding mode-observers. Naval Postgraduate School, Center for Autonomous Underwater Vehicle Research, CA, USA

    Google Scholar 

  45. Antonelli G, Caccavale F, Sansone C, Villani L (2004) Diagnosis of actuator faults in AUVs based on neural networks. IFAC Proc Vol 37(10):89–94

    Article  Google Scholar 

  46. Jian-guo W (2012) Fault diagnosis of underwater vehicle with neural network. In: 2012 24th Chinese control and decision conference (CCDC). IEEE, China, pp 1613–1617

    Google Scholar 

  47. Liang X, Li W, Su L, Yin H, Zhao J (2010) Thruster fault diagnosis of autonomous underwater vehicles based on least disturbance wavelet neural network. In: 2010 second international conference on computer modeling and simulation, vol 1. IEEE, China, pp 78–82

    Google Scholar 

  48. Takai M, Ura T (1999) Development of a system to diagnose autonomous underwater vehicles. Int J Syst Sci 30(9):981–988

    Article  MATH  Google Scholar 

  49. Ranganathan N, Patel MI, Sathyamurthy R (2001) An intelligent system for failure detection and control in an autonomous underwater vehicle. IEEE Trans Syst Man Cybern Part A: Syst Humans 31(6):762–767

    Article  Google Scholar 

  50. Liu W, Wang Y, Yin B, Liu X, Zhang M (2017) Thruster fault identification based on fractal feature and multiresolution wavelet decomposition for autonomous underwater vehicle. Proc Inst Mech Eng C J Mech Eng Sci 231(13):2528–2539

    Article  Google Scholar 

  51. Wang J, Wu G, Wan L (2008) Sensor fault diagnosis for underwater robots. In: 2008 7th world congress on intelligent control and automation. IEEE, China, pp 254–259

    Google Scholar 

  52. Abed W, Sharma SK, Sutton R, Khan A (2017) An unmanned marine vehicle thruster fault diagnosis scheme based on OFNDA. J Mar Eng Technol 16(1):37–44

    Article  Google Scholar 

  53. Yao F, Wang F, Zhang M (2018) Weak thruster fault detection for autonomous underwater vehicle based on artificial immune and signal pre-processing. Adv Mech Eng 10(2):1687814018758739

    Article  Google Scholar 

  54. Hamilton K, Lane DM, Brown KE, Evans J, Taylor NK (2007) An integrated diagnostic architecture for autonomous underwater vehicles. J Field Robot 24(6):497–526

    Article  Google Scholar 

  55. Liang X, Zhang J, Li W, Lin J (2011) Sensor fault diagnosis for autonomous underwater vehicles. Sens Lett 9(5):2062–2066

    Article  Google Scholar 

  56. Liu WX, Wang YJ, Liu X, Zhang MJ (2016) Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction. J Cent South Univ 23(11):2883–2895

    Article  Google Scholar 

  57. Liu F, Xu D, Yu J, Bai L (2018) Fault isolation of thrusters under redundancy in frame-structure unmanned underwater vehicles. Int J Adv Rob Syst 15(2):1729881418770876

    Google Scholar 

  58. He J, Li Y, Jiang Y, Li Y, An L (2018) Propeller fault diagnosis based on a rank particle filter for autonomous underwater vehicles. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike 69(2):147–164

    Google Scholar 

  59. He J, Li Y, Cao J, Li Y, Jiang Y, An L (2020) An improved particle filter propeller fault prediction method based on grey prediction for underwater vehicles. Trans Inst Meas Control 42(11):1946–1959

    Article  Google Scholar 

  60. He J, Li Y, Li Y, Jiang Y, An L (2018) Fault diagnosis in autonomous underwater vehicle propeller in the transition stage based on GP-RPF. Int J Adv Rob Syst 15(6):1729881418814683

    Google Scholar 

  61. Zhao B, Skjetne R, Blanke M, Dukan F (2014) Particle filter for fault diagnosis and robust navigation of underwater robot. IEEE Trans Control Syst Technol 22(6):2399–2407

    Article  Google Scholar 

  62. Yin B, Zhang M, Lin X, Fang J, Su S (2020) A fault diagnosis approach for autonomous underwater vehicle thrusters using time-frequency entropy enhancement and boundary constraint–assisted relative gray relational grade. Proc Inst Mech Eng Part I: J Syst Control Eng 234(4):512–526

    Google Scholar 

  63. Xiang X, Yu C, Zhang Q (2017) On intelligent risk analysis and critical decision of underwater robotic vehicle. Ocean Eng 140:453–465

    Article  Google Scholar 

  64. Wang P, Zheng J, Li C (2009) Cooperative fault-detection mechanism with high accuracy and bounded delay for underwater sensor networks. Wirel Commun Mob Comput 9(2):143–153

    Article  Google Scholar 

  65. Raanan BY, Bellingham JG, Zhang Y, Kemp M, Kieft B, Singh H, Girdhar Y (2016) Automatic fault diagnosis for autonomous underwater vehicles using online topic models. In: OCEANS 2016 MTS/IEEE. IEEE, Monterey, USA, pp 1–6

    Google Scholar 

  66. Raanan BY, Bellingham J, Zhang Y, Kieft B, Stanway MJ, McEwen R, Hobson B (2015) A real-time vertical plane flight anomaly detection system for a long range autonomous underwater vehicle. In: OCEANS 2015-MTS/IEEE. IEEE, Washington, USA, pp 1–6

    Google Scholar 

  67. Wang Y, Zhang M (2006) Research on test-platform and condition monitoring method for AUV. In: 2006 international conference on mechatronics and automation. IEEE, China, pp 1673–1678

    Google Scholar 

  68. Zhang M, Yin B, Liu X, Guo J (2015) Thruster fault identification method for autonomous underwater vehicle using peak region energy and least square grey relational grade. Adv Mech Eng 7(12):1687814015622905

    Article  Google Scholar 

  69. Sun YS, Li YM, Zhang GC, Zhang YH, Wu HB (2016) Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network. J Cent South Univ 23(4):808–816

    Article  Google Scholar 

  70. Wang J (2012) Fault diagnosis of underwater vehicle with FNN. In: Proceedings of the 10th world congress on intelligent control and automation. IEEE, China, pp 2931–2934

    Google Scholar 

  71. Wang J, Wu G, Wan L, Sun Y, Jiang D (2009) Recurrent neural network applied to fault diagnosis of underwater robots. In: 2009 IEEE international conference on intelligent computing and intelligent systems, vol 1. IEEE, China, pp 593–598

    Google Scholar 

  72. Zhang M, Yin B, Liu W, Liu X (2016) Thruster fault feature extraction for autonomous underwater vehicle in time-varying ocean currents based on single-channel blind source separation. Proc Inst Mech Eng Part I: J Syst Control Eng 230(1):46–57

    Google Scholar 

  73. Zhang MJ, Wu J, Chu ZZ (2014) Multi-fault diagnosis for autonomous underwater vehicle based on fuzzy weighted support vector domain description. China Ocean Eng 28(5):599–616

    Article  Google Scholar 

  74. Yin B, Yao F, Wang Y, Zhang M, Zhu C (2019) Fault degree identification method for thruster of autonomous underwater vehicle using homomorphic membership function and low frequency trend prediction. Proc Inst Mech Eng C J Mech Eng Sci 233(4):1426–1440

    Article  Google Scholar 

  75. Wu P, Harris CA, Salavasidis G, Lorenzo-Lopez A, Kamarudzaman I, Phillips AB, Thomas G, Anderlini E (2021) Unsupervised anomaly detection for underwater gliders using generative adversarial networks. Eng Appl Artif Intell 104:104379

    Article  Google Scholar 

  76. Raanan BY, Bellingham J, Zhang Y, Kemp M, Kieft B, Singh H, Girdhar Y (2018) Detection of unanticipated faults for autonomous underwater vehicles using online topic models. J Field Robot 35(5):705–716

    Article  Google Scholar 

  77. Zhu D, Sun B (2013) Information fusion fault diagnosis method for unmanned underwater vehicle thrusters. IET Electr Syst Transp 3(4):102–111

    Article  Google Scholar 

  78. Jiang Y, Feng C, He B, Guo J, Wang D, PengFei LV (2021) Actuator fault diagnosis in autonomous underwater vehicle based on neural network. Sens Actuators, A 324:112668

    Article  Google Scholar 

  79. Blanke M, Kinnaert M, Lunze J, Staroswiecki M, Schröder J (2006) Diagnosis and fault-tolerant control, vol 2. Springer, Berlin

    MATH  Google Scholar 

  80. Hilsch M, Lunze J, Nitsche R (2009) Fault-tolerant internal model control with application to a diesel engine. IFAC Proc Vol 42(8):1091–1096

    Article  Google Scholar 

  81. Looze D, Weiss J, Eterno J, Barrett N (1985) An automatic redesign approach for restructurable control systems. IEEE Control Syst Mag 5(2):16–22

    Article  Google Scholar 

  82. Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51(10):1590–1601

    Article  MathSciNet  MATH  Google Scholar 

  83. Sarkar N, Podder TK, Antonelli G (2002) Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Trans Robot Autom 18(2):223–233

    Article  Google Scholar 

  84. Liu X, Zhang M, Yao F (2018) Adaptive fault tolerant control and thruster fault reconstruction for autonomous underwater vehicle. Ocean Eng 155:10–23

    Article  Google Scholar 

  85. Xu R, Tang G, Huang D, Xie D, Han L (2020) Adaptive fault-tolerant attitude control for a CMG-based underwater vehicle. J Mar Sci Technol 25(3):800–807

    Article  Google Scholar 

  86. Zhu C, Huang B, Zhou B, Su Y, Zhang E (2021) Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles. ISA Trans 114:57–71

    Article  Google Scholar 

  87. Liu X, Zhang M, Wang S (2020) Adaptive region tracking control with prescribed transient performance for autonomous underwater vehicle with thruster fault. Ocean Eng 196:106804

    Article  Google Scholar 

  88. Zhang M, Liu X, Wang F (2017) Backstepping based adaptive region tracking fault tolerant control for autonomous underwater vehicles. J Navig 70(1):184–204

    Article  Google Scholar 

  89. Baldini A, Felicetti R, Freddi A, Longhi S, Monteriù A, Fasano A (2018) Fault detection, diagnosis and fault tolerant output control for a remotely operated vehicle. In: 2018 14th IEEE/ASME international conference on mechatronic and embedded systems and applications (MESA). IEEE, Finland, pp 1–7

    Google Scholar 

  90. Soylu S, Buckham BJ, Podhorodeski RP (2008) A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation. Ocean Eng 35(16):1647–1659

    Article  Google Scholar 

  91. Lv T, Zhou J, Wang Y, Gong W, Zhang M (2020) Sliding mode-based fault tolerant control for autonomous underwater vehicle. Ocean Eng 216:107855

    Article  Google Scholar 

  92. Zhang M, Liu X, Yin B, Liu W (2015) Adaptive terminal sliding mode-based thruster fault tolerant control for underwater vehicle in time-varying ocean currents. J Franklin Inst 352(11):4935–4961

    Article  MathSciNet  MATH  Google Scholar 

  93. Hao LY, Yu Y, Li H (2019) Fault tolerant control of UMV based on sliding mode output feedback. Appl Math Comput 359:433–455

    MathSciNet  MATH  Google Scholar 

  94. Qin H, Chen H, Sun Y, Chen L (2019) Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying node systems with error constraints. Ocean Eng 189:106341

    Article  Google Scholar 

  95. Ni L, Fuller CR (2003) Control reconfiguration based on hierarchical fault detection and identification for unmanned underwater vehicles. J Vib Control 9(7):735–748

    Article  MATH  Google Scholar 

  96. Zhu D, Liu J, Yang SX (2011) Particle swarm optimization approach to thruster fault-tolerant control of unmanned underwater vehicles. Int J Robot Autom 26(3):282

    Google Scholar 

  97. Sun B, Zhu D, Sun L (2013) A tracking control method with thruster fault tolerant control for unmanned underwater vehicles. In: 2013 25th Chinese control and decision conference (CCDC). IEEE, China, pp 4915–4920

    Google Scholar 

  98. Liu J, Wu Q, Zhu D (2009) Thruster fault-tolerant for UUVs based on quantum-behaved particle swarm optimization. In: Opportunities and challenges for next-generation applied intelligence. Springer, Berlin, Heidelberg, pp 159–165

    Google Scholar 

  99. Sun B, Zhu D, Yang SX (2016) A novel tracking controller for autonomous underwater vehicles with thruster fault accommodation. J Navig 69(3):593–612

    Article  Google Scholar 

  100. Liu Q, Zhu D, Yang SX (2012) Unmanned underwater vehicles fault identification and fault-tolerant control method based on FCA-CMAC neural networks, applied on an actuated vehicle. J Intell Rob Syst 66(4):463–475

    Article  Google Scholar 

  101. Wang Y, Wilson PA, Liu X (2015) Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault. Ocean Eng 110:15–24

    Article  Google Scholar 

  102. Soylu S, Buckham BJ, Podhorodeski RP (2007) Robust control of underwater vehicles with fault-tolerant infinity-norm thruster force allocation. In: OCEANS 2007. IEEE, Scotland, pp 1–10

    Google Scholar 

  103. Letizia Corradini M, Orlando G (2014) A robust observer-based fault tolerant control scheme for underwater vehicles. J Dyn Syst Meas Control 136(3):034504

    Google Scholar 

  104. Cheng XQ, Qu JY, Yan ZP, Bian XQ (2010) H robust fault-tolerant controller design for an autonomous underwater vehicle’s navigation control system. J Mar Sci Appl 9(1):87–92

    Article  Google Scholar 

  105. Hou C, Li X, Wang H, Zhai P, Lu H (2022) Fuzzy linear extended states observer‐based iteration learning fault‐tolerant control for autonomous underwater vehicle trajectory‐tracking system. IET Control Theory Appl 1–14

    Google Scholar 

  106. Li XG, Wang HD, Li M, Karkoub M (2019) A linear extended state observer-based fuzzy fault tolerant controller for autonomous underwater vehicle. In: 2019 IEEE symposium series on computational intelligence (SSCI). IEEE, China, pp 3265–3271

    Google Scholar 

  107. Li X, Wang J, Xu Q, Wang H, Yang K, Mao D (2020) Extended state observer based iteration learning fault-tolerant control scheme for AUV. In: Global oceans 2020: Singapore–US Gulf Coast. IEEE, Online, pp 1–8

    Google Scholar 

  108. Hao LY, Zhang H, Li H, Li TS (2020) Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay. Ocean Eng 215:107882

    Article  Google Scholar 

  109. Li H, Lin X (2022) Robust finite-time fault-tolerant control for dynamic positioning of ships via nonsingular fast integral terminal sliding mode control. Appl Ocean Res 122:103126

    Article  Google Scholar 

  110. Yin S, Xiao B, Ding SX, Zhou D (2016) A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans Ind Electron 63(5):3311–3320

    Article  Google Scholar 

  111. Jiang J, Yu X (2012) Fault-tolerant control systems: a comparative study between active and passive approaches. Annu Rev Control 36(1):60–72

    Article  Google Scholar 

  112. Amin AA, Hasan KM (2019) A review of fault tolerant control systems: advancements and applications. Measurement 143:58–68

    Article  Google Scholar 

  113. Amin MT, Imtiaz S, Khan F (2018) Process system fault detection and diagnosis using a hybrid technique. Chem Eng Sci 189:191–211

    Article  Google Scholar 

  114. Dai X, Gao Z (2013) From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis. IEEE Trans Industr Inf 9(4):2226–2238

    Article  Google Scholar 

  115. Saiella L, Cristofaro A, Ferro M, Vendittelli M (2021) Fault-tolerant formation control of a team of quadrotors with a suspended payload. In: 2021 international conference on unmanned aircraft systems (ICUAS). IEEE, Athens, Greece, pp 1–9

    Google Scholar 

  116. Villa DKD, Brandoa AS, Filho MS (2020) A survey on load transportation using multirotor UAVs. J Intell Rob Syst 98:267–296

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the IITG TIDF (Technology Innovation and Development Foundation) at the Indian Institute of Technology, Guwahati campus in providing computers (PCs) for conducting the extensive literature review presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raj, S., Reddy, B.S., Deka, A. (2023). A Survey on Fault Tolerant Control of Unmanned Underwater Vehicles. In: Bhattacharjee, R., Neog, D.R., Mopuri, K.R., Vipparthi, S.K. (eds) Artificial Intelligence and Data Science Based R&D Interventions. NERC 2022. Springer, Singapore. https://doi.org/10.1007/978-981-99-2609-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2609-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2608-4

  • Online ISBN: 978-981-99-2609-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics