Skip to main content
  • 222 Accesses

Abstract

Heavy metals including cobalt, copper, manganese, molybdenum, and zinc are required by plants and other living organisms in trace levels for growth. Heavy metals, on the other hand, can be harmful in large doses. Plants, like other species, have a variety of detoxification processes to combat heavy metal toxicity. Heavy metal chelation by phytochelatins and metallothioneins, binding with plant cell walls and root excretions, metal efflux from the plasma membrane, metal chelation by phytochelatins and metallothioneins, and compartmentalization inside the vacuole are all examples. Plants have tiny metal-binding peptides called phytochelatins (PCs). PCs, metallothioneins, organic acids, and amino acids are the most common metal chelators. PCs are found in many higher plants, fungi such as Schizosaccharomyces pombe, Candida glabrata, and Mucroracemosus, algae, bryophytes, pteridophytes, and gymnosperms, and algae, bryophytes, pteridophytes, and gymnosperms. The inactive toxic metal ions of metal—PC chelatins were then transported from the cytosol to the vacuole before poisoning the enzymes of life-sustaining metabolic pathways, and transiently stored in the vacuole to reduce the heavy metal concentration in the cytosol, allowing for heavy metal detoxification. PC production in response to heavy metal stress is one of the truly adaptive responses that occur frequently in higher plants. The buildup of PC in heavy metal tolerant genotypes is substantially higher than in non-tolerant lines. The substrate for the synthesis of PC, which chelated the metals, is glutathione (GSH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoniou C, Rafaella X, Giannis C, Anastasis C, Khosrow K, Vasileios F (2020) Exploring the potential of nitric oxide and hydrogen sulfide (NOSH)-releasing synthetic compounds as novel priming agents against drought stress in Medicago sativa plants. Biomolecules 2020(10):120

    Google Scholar 

  • Bai J, Wang X, Wang R, Wang J, Le S, Zhao Y (2019) Overexpression of three duplicated BnPCS genes enhanced Cd accumulation and translocation in Arabidopsis thaliana mutant cad1–3. Bull Environ Contam Toxicol 102:146–152

    CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2021) Metallothionein-assisted phytoremediation of inorganic pollutants. Handbook of Bioremediation. Academic Press, Cambridge, MA, USA, pp 81–90

    Google Scholar 

  • Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 6:977–989

    Google Scholar 

  • Centeno JA, Tchounwou PB, Patlolla AK, Mullick FG, Murakata L, Meza E et al (2006) Managing arsenic in the environment: from soil to human health. CSIRO Publishing, Australia, pp 311–318

    Google Scholar 

  • Chauhan R, Awasthi S, Indoliya Y, Chauhan AS, Mishra S, Agrawal L, Srivastava S, Dwivedi S, Singh PC, Mallick S, Chauhan PS, Pande V, Chakrabarty D, Tripathi RD (2020) Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.). J Hazard Mat 390:122122

    Google Scholar 

  • Chen J et al (2015a) MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. New Phytol 205:570–582

    CAS  Google Scholar 

  • Chen YK, Liu YX, Ding YN, Wang XT, Xu JC (2015b) Overexpression of PtPCS enhances cadmium tolerance and cadmium accumulation in tobacco. Plant Cell Tissue Organ 121:389–396

    CAS  Google Scholar 

  • Choudhary S, Zehra A, Mukarram M, Wani KI, Naeem M, Khan MMA, Aftab T (2021) Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components. Chemosphere 276:130153

    CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  Google Scholar 

  • Del Buono D, Terzano R, Panfili I, Bartucca ML (2020) Phytoremediation and detoxification of xenobiotics in plants: herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review. Int J Phytoremediation 22(8):789–803

    Google Scholar 

  • Fan W et al (2018) Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. Gene 645:95–104

    CAS  Google Scholar 

  • Filiz E, Saracoglu IA, Ozyigit II II, Yalcin B (2019a) Comparative analyses of phytochelatin synthase (PCS) genes in higher plants. Biotechnol Biotechnol Equip 33:178–194

    CAS  Google Scholar 

  • Filiz E, Saracoglu IA, Ozyigit II, Yalcin B (2019b) Abiotic stress-induced regulation of antioxidant genes in diferent Arabidopsis ecotypes: microarray data evaluation. Biotechnol Biotechnol Equip 33:128–143

    CAS  Google Scholar 

  • Flora SJ, Saxena G, Gautam P, Kaur P, Gill KD (2007) Response of lead-induced oxidative stress and alterations in biogenic amines in different rat brain regions to combined administration of DMSA and MiADMSA. Chem Biol Interact 170(3):209–220

    CAS  Google Scholar 

  • Flora SJ, Mittal M, Mehta A (2009) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Altern Med Rev 14(1):87–88

    Google Scholar 

  • Geier DA, Kern JK, Garver CR et al (2009) Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 280(1):101–108

    CAS  Google Scholar 

  • Ghori Z, Iftikhar H, Bhatti MF, Nasar um M, Sharma I, Kazi AG, Ahmad P (2016) Chapter 15-Phytoextraction: the use of plants to remove heavy metals from soil. In: Ahmad P (ed) Plant metal interaction. Elsevier, Amsterdam, pp 385–409

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Science 230:674–676

    CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1986) FEBS Lett 197:115–120

    CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    CAS  Google Scholar 

  • Gupta DK, Tripathi RD, Mishra S, Srivastava S, Dwivedi S, Rai UN, Yang XE, Huang H, Inouhe M (2008) Arsenic accumulation in roots and shoots vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 29:281–286

    CAS  Google Scholar 

  • Hasan M, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y et al (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Google Scholar 

  • Hubner R, Astin KB, Herbert RJ (2010) ‘Heavy metal’—time to move on from semantics to pragmatics? J Environ Monit 12(8):1511–1514

    Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T (2021) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Google Scholar 

  • Joshi D, Mittal D, Shrivastav S, Shukla S, Srivastav AK (2011) Combined effect of N-acetyl cysteine, zinc, and selenium against chronic dimethylmercury-induced oxidative stress: a biochemical and histopathological approach. Arch Environ Contam Toxicol 61(4):558–567

    CAS  Google Scholar 

  • Karalija E, Selović A, Dahija S, Demir A, Samardžić J, Vrobel O, Zeljković SĆ, Parić A (2021) Use of seed priming to improve Cd accumulation and tolerance in Silene sendtneri, novel Cd hyper-accumulator. Ecotoxicol Environ Saf 210:111882

    CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220

    CAS  Google Scholar 

  • Kondo N, Isobe M, Imai K, Goto T (1985) Agric Biol Chem 49:71–83

    CAS  Google Scholar 

  • Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12:1–14

    Google Scholar 

  • Kühnlenz T, Westphal L, Schmidt H, Scheel D, Clemens S (2015) Expression of Caenorhabditis elegans PCS in the AtPCS1-defcient Arabidopsis thaliana cad1-3 mutant separates the metal tolerance and non-host resistance functions of phytochelatin synthases. Plant Cell Environ 38:2239–2247

    Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24(1):39–51

    Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C et al (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    Google Scholar 

  • Mishra J, Singh R, Arora NK (2017a) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Google Scholar 

  • Mishra S, Mishra A, Kupper H (2017b) Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaeacaerulescens. Front Plant Sci 8:1–13

    CAS  Google Scholar 

  • Mladenov V, Fotopoulos V, Kaiserli E, Karalija E, Maury S, Baranek M, Segal N, Testillano PS, Vassileva V, Pinto G et al (2021) Deciphering the epigenetic alphabet involved in transgenerational stress memory in crops. Int J Mol Sci 22:7118

    Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160(3):945–963

    CAS  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    CAS  Google Scholar 

  • Printz B, Lutts S, Hausman JF, Sergeant K (2016) Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci 7:601

    Google Scholar 

  • Romanyuk ND, Rigden DJ, Vatamaniuk OK, Lang A, Cahoon RE, Jez JM et al (2006) Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant Physiol 141(3):858–869

    CAS  Google Scholar 

  • Rooney JPK (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234(3):145–156

    CAS  Google Scholar 

  • Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543–564

    CAS  Google Scholar 

  • Shah MP (2020) Microbial bioremediation & biodegradation. Springer

    Google Scholar 

  • Shah MP (2021) Removal of emerging contaminants through microbial processes. Springer

    Google Scholar 

  • Shukla D, Trivedi PK, Nath P, Tuteja N (2016) Metallothioneins and phytochelatins: role and perspectives in heavy metal(loid) s stress tolerance in crop plants. In: Tuteja N, Gill SS (eds) Abiotic stress response in plants. Wiley, New York

    Google Scholar 

  • Song Y, Jin L, Wang X (2017) Cadmium absorption and transportation pathways in plants. Int J Phytoremediat 19:133–141

    CAS  Google Scholar 

  • Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxicol Environ Health A

    Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K, Suzui N, Kawachi N, Ishii S et al (2014) From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE 9:e98816

    Google Scholar 

  • Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948

    CAS  Google Scholar 

  • Thevenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23:857–875

    CAS  Google Scholar 

  • Trevor AJ, Katzung BG, Masters SB, Kruidering-Hall M (2010) Pharmacology examination & board review. McGraw-Hill Medical, New York, pp 469–483

    Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Chakrabarty D, Trivedi PK, Adhikari B (2013) Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ Sci Pollut Res Int 20(2):884–896

    Google Scholar 

  • Uraguchi S, Sone Y, Ohta Y, Ohkama-Ohtsu N, Hofmann C, Hess N et al (2018) Identification of C-terminal regions in Arabidopsis thaliana Phytochelatin Synthase 1 specifically involved in activation by arsenite. Plant and Cell Physiol 59(3):500–509

    CAS  Google Scholar 

  • U.S Environmental Protection Agency (EPA) (2006) Cadmium compounds

    Google Scholar 

  • US Environmental Protection Agency (USEPA) (2020) Integrated risk information system of the US environmental protection agency. USEPA, Washington, DC, USA

    Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275:31451–31459

    CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. J Biol Chem 279(21):22449–22460

    CAS  Google Scholar 

  • Wawrzyński A, Kopera E, Wawrzyńska A, Kamińska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57(10):2173–2182

    Google Scholar 

  • WHO/FAO/IAEA (1996) Trace elements in human nutrition and health

    Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Google Scholar 

  • Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment Paul B Tchounwou. Published in final edited form as. EXS 101:133–164

    Google Scholar 

  • Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z (2018) Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Front Plant Sci

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Sethi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethi, S. (2023). Phytochelatins: Heavy Metal Detoxifiers in Plants. In: Shah, M.P. (eds) Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-99-2598-8_16

Download citation

Publish with us

Policies and ethics