Skip to main content

Silver Applied Ceramic Filters as Point-of-Use Water Treatment Device

  • Chapter
  • First Online:
Clay Composites

Abstract

The sustainable access to clean and safe water has resulted to improved health outcomes. Millions of deaths of underage children have been linked to the consumption of microbial contaminated water from various sources. The cost of the provision of centralized water infrastructure for potable water supply is high and becoming unbearable for many developing countries across the globe. The invention of several point-of-use water treatment devices has aided the provision of safe water for human consumption at the household level. One of such water treatment devices is the use of silver-impregnated ceramic water filters. The material used are often of local origin which makes it cheap and affordable for many. This chapter report on the use of various forms of silver-applied ceramic filters, the mode of silver application as well as the socioeconomic factors that favors its use under different settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abebe, L.S., Smith, J.A., Narkiewicz, S., Oyanedel-Craver, V., Conaway, M., Singo, A., Amidou, S., Mojapelo, P., Brant, J., Dillingham, R.: Ceramic water filters impregnated with silver nanoparticles as a point-of-use water-treatment intervention for HIV-positive individuals in Limpopo Province, South Africa: A pilot study of technological performance and human health benefits. J. Water Health 12(2), 288–300 (2016)

    Article  Google Scholar 

  2. Adeeyo, A.O., Ndlovu, S.S., Ngwagwe, L.M., Mudau, M., Alabi, M.A., Edokpayi, J.N.: Wetland resources in South Africa: threats and metadata study. Resources 2022(11), 54 (2022). https://doi.org/10.3390/resources11060054

    Article  Google Scholar 

  3. Akowanou, A.V.O., Deguenon, H.E.J., Groendijk, L., Aina, M.P., Yao, B.K., Drogui, P.: 3D-printed clay-based ceramic water filters for point-of-use water treatment applications. Prog. Addit. Manuf. 4(3), 315–321 (2019)

    Article  Google Scholar 

  4. Akosile, S.I., Ajibade, F.O., Lasisi, K.H., Ajibade, T.F., Adewumi, J.R., Babatola, J.O., Oguntuase, A.M.: Performance evaluation of locally produced ceramic filters for household water treatment in Nigeria. Scientific African 7, 1–13 (2020)

    Article  Google Scholar 

  5. Aliyu, A., Usman, M., Audu, N.: Development of ceramic disc water filter for domestic use. Development 17(5), 176–189 (2019)

    Google Scholar 

  6. Amazon.: Stéfani São João Brazilian clay water filter (10 L—2.6 gal), Brown (2022). https://www.amazon.com/S%C3%A3o-Jo%C3%A3o-St%C3%A9fani-BrazilianFilter/dp/B07NWRVRQZ?th=1. Accessed 11 Oct 2022

  7. Amoah, A., Asiama, R.K., Korle, K., Kwablah, E.: Domestic water improvement behaviour: The probability determinants and policy implications. Water Policy 23(4), 880–896 (2021)

    Article  Google Scholar 

  8. Bari, M.N., Khatun, M.S, Fatema Khatun, H.R.: Removal of colour from wastewater using locally available charcoal. In 2nd International conference on civil engineering for sustainable development. Pp 14–16(2014)

    Google Scholar 

  9. Boisson, S., Stevenson, M., Shapiro, L., Kumar, V., Singh, L.P., Ward, D., Clasen, T.: Effect of household-based drinking water chlorination on diarrhoea among children under five in Orissa, India: a double-blind randomised placebo-controlled trial. PLoS Med. 10(8), 1–12 (2013)

    Article  Google Scholar 

  10. Brown, J., Sobsey, M.D., Loomis, D.: Local drinking water filters reduce diarrheal disease in Cambodia: A randomized, controlled trial of the ceramic water purifier. Am. J. Trop. Med. Hyg. 79, 394–400 (2008)

    Article  Google Scholar 

  11. Brown, J., Sobsey, M.D.: Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia. J. Water Health 8, 1–10 (2010)

    Article  CAS  Google Scholar 

  12. Bulta, A.L., Micheal, G.A.W.: Evaluation of the efficiency of ceramic filters for water treatment in Kambata Tabaro zone, southern Ethiopia. Environ. Syst. Res. 8, 1–15 (2019)

    Article  Google Scholar 

  13. Ceramics Manufacturing Working Group (CMWG).: Best practice recommendations for local manufacturing of ceramic pot filters for household water treatment. The Ceramics Manufacturing Working Group: Atlanta, Georgia, United State of America (2011)

    Google Scholar 

  14. Chaukura, N., Chiworeso, R., Gwenzi, W., Motsa, M.M., Munzeiwa, W., Moyo, W., Chikurunhe, I., Nkambule, T.T.: A new generation low-cost biochar-clay composite ‘biscuit’ceramic filter for point-of-use water treatment. Appl. Clay Sci. 185, 1–10 (2020)

    Article  Google Scholar 

  15. Chaúque, B.J.M., Rott, M.B.: Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. Chemosphere 281, 1–19 (2021)

    Article  Google Scholar 

  16. Clasen, T., Boisson, S.: Household-based ceramic water filters for the treatment of drinking water in disaster response: An assessment of a pilot programme in the dominican republic. Water Pract. Technol., 1, (2006)

    Google Scholar 

  17. Coleman, C.K., Mai, E., Miller, M., Sharma, S., Williamson, C., Oza, H., Holmes, E., Lamer, M., Ly, C., Stewart, J., Sobsey, M.D., Abebe, L.S.: Chitosan coagulation pretreatment to enhance ceramic water filtration for household water treatment. Int. J. Mol. Sci. 22(18), 1–17 (2021)

    Article  Google Scholar 

  18. Dankovich, T.A., Gray, D.G.: Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 45, 1992–1998 (2011)

    Article  CAS  Google Scholar 

  19. Dung, T.T.N., Thi, L.A.P., Nam, V.N., Nhan, T.T., Quang, D.V.: Preparation of silver nanoparticle-containing ceramic filter by in-situ reduction and application for water disinfection. J. Environ. Chem. Eng. 7(3), 1–10 (2019)

    Google Scholar 

  20. Edokpayi, J.N., Makungo, R., Volenzo, E.T., Rivers, T., Fhumulani, M., Odiyo, J.O.: Influence of global climate change on water resources in South Africa: towards an adaptive management approach. Chapter 5. In: P Singh, Y. Milshina, K. Tian, D. Gusain, J. Bassin (eds.). ISBN: 9780128183397. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-818339-7.00005-9.

  21. Ehdaie, B., Rento, C.T., Son, V., Turner, S.S., Samie, A., Dillingham, R.A., Smith, J.A.: Evaluation of a silver-embedded ceramic tablet as a primary and secondary point-of-use water purification technology in Limpopo Province. South Africa. PloS one 12(1), 1–20 (2017)

    Google Scholar 

  22. Ehdaie, B., Su, Y.-H., Swami, N.S., Smith, J.A.: Protozoa and virus disinfection by silver-and copper-embedded ceramic tablets for water purification. J. Environ. Eng. 146, 04020015 (2020)

    Article  CAS  Google Scholar 

  23. Ekpunobi, U.E., Agbo, S.U., Ajiwe, V.I.E.: Evaluation of the mixtures of clay, diatomite, and sawdust for production of ceramic pot filters for water treatment interventions using locally sourced materials. J. Environ. Chem. Eng. 7(1), 1–9 (2019)

    Article  Google Scholar 

  24. Erhuanga, E., Banda, M.M., Kiakubu, D., Kashim, I.B., Ogunjobi, B., Jurji, Z., Ayoola, I., Soboyejo, W.: Potential of ceramic and biosand water filters as low-cost point-of-use water treatment options for household use in Nigeria. J. Water, Sanit.Ion Hyg. Dev. 11, 126–140 (2021)

    Article  Google Scholar 

  25. Erhuanga, E., Kashim, I.B., Akinbogun, T.L.: Development of ceramic filters for household water treatment in Nigeria. Sci. Res. 2(1), 6–10 (2014)

    Google Scholar 

  26. Falah, F., Haghizadeh, A.: Hydrochemical evaluation of river water quality—a case study: Horroud River. Appl Water Sci 7(8), 4725–4733 (2017)

    Article  CAS  Google Scholar 

  27. Fewtrell, L., Majuru, B., Hunter, P.R.: A re-assessment of the safety of silver in household water treatment: Rapid systematic review of mammalian in vivo genotoxicity studies. Environ. Health 16, 1–9 (2017)

    Article  Google Scholar 

  28. GARG, M.: Water pollution in India causes and remedies. Int. J. Phys. Soc. Sci. 2(6), 555–567 (2012)

    Google Scholar 

  29. Goswami, K.P., Pugazhenthi, G.: Credibility of polymeric and ceramic membrane filtration in the removal of bacteria and virus from water: A review. J. Environ. Manage. 268, 1–18 (2020)

    Article  Google Scholar 

  30. Guerrero-Latorre, L., Rusiñol, M., Hundesa, A., Garcia-Valles, M., Martinez, S., Joseph, O., Bofill-Mas, S., Girones, R.: Development of improved low-cost ceramic water filters for viral removal in the Haitian context. J. Water, Sanit.Ion Hyg. Dev. 5(1), 28–38 (2015)

    Article  Google Scholar 

  31. Halla, F.F., Massawa, S.M., Joseph, E.K., Acharya, K., Sabai, S.M., Mgana, S.M., Werner, D.: Attenuation of bacterial hazard indicators in the subsurface of an informal settlement and their application in quantitative microbial risk assessment. Environ. Int. 167, 1–13 (2022)

    Article  Google Scholar 

  32. Hill, C.L., Harris, J.D., Turner, S.S., Wason, K.L., Gaylord, A.P., Hatley, M.G., Lance, T., Hardcastle, L.T., Roberts, I.T., You, J.Y., Renneker, K.O., Edokpayi, J.N., Smith, J.A.: Field and laboratory assessment of a new electrolytic point-of-use water treatment technology. Water. 14(7): 1-19(2022)

    Google Scholar 

  33. Hill, C.L., McCain, K., Nyathi, M.E., Edokpayi, J.N., Kahler, D.M., Operario, D.J., Taylor, D.D.J., Wright, N.C., Smith, J.A., Guerrant, R.L., Samie, A., Dillingham, R.A., Bessong, P.O., Rogawski Mcquade, E. T.: Impact of low-cost point-of-use water treatment technologies on enteric infections and growth among children in Limpopo, South Africa. Am. Soc. Trop. Med. Hyg. 103, 1405–1415 (2020)

    Article  CAS  Google Scholar 

  34. Issa, R. J., Schoepfer, A. P., Grisold, A., Schoepfer, A.: Collaboration between west Texas A&M University, FH Joanneum, and medical University of Graz on water quality improvement for rural areas of India. Am. Soc. Therm. Fluids Engineers: 613–622. Digital library(2020)

    Google Scholar 

  35. Jackson, K.N., Smith, J.A.: A new method for the deposition of metallic silver on porous ceramic water filters. J. Nanotechnol. 2018, 1–9 (2018)

    Article  Google Scholar 

  36. Jackson, K.N., Smith, J.A., Edokpayi, J.N.: New method for the deposition of metallic silver and metallic copper on full-size porous ceramic water filters. Environ. Eng. Sci. 36, 2–11 (2019)

    Article  CAS  Google Scholar 

  37. Kendarto, D.R., Mulyawan, A., Dwiratna, S., Bafdal, N., Suryadi, E.: Effectiveness of ceramic water filter pots with addition of silver nitrate to reduce of Escherichia Coli contents. Int. J. Adv. Sci., Eng. Inf. Technol. 9, 526–531 (2019)

    Article  Google Scholar 

  38. Kotloff, K.L., Nataro, J.P., Blackwelder, W.C., Nasrin, D., Farag, T.H., Panchalingam, S., Wu, Y., Sow, S.O., Sur, D., Breiman, R.F.: Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. The Lancet 382, 209–222 (2013)

    Article  Google Scholar 

  39. Lange, J., Materne, T., Grüner, J.: Do low-cost ceramic water filters improve water security in rural South Africa? Drink. Water Eng. Sci. 9, 47–55 (2016)

    Article  CAS  Google Scholar 

  40. Lantagne, D.: Investigation of the Potters for Peace colloidal silver-impregnated ceramic filter: Intrinsic effectiveness and field performance in rural Nicaragua. Aleth. Environ., Allston, Massachusetts.(2021)

    Google Scholar 

  41. Lemons, A., Branz, A., Kimirei, M., Hawkins, T., Lantagne, D.: Assessment of the quality, effectiveness, and acceptability of ceramic water filters in Tanzania. J. Water, Sanit.Ion Hyg. Dev. 6(2), 195–197 (2016)

    Article  Google Scholar 

  42. Lyon-Marion, B.A., Mittelman, A.M., Rayner, J., Lantagne, D.S., Pennell, K.D.: Impact of chlorination on silver elution from ceramic water filters. Water Res. 142, 471–479 (2018)

    Article  CAS  Google Scholar 

  43. Maciel, P.M.F., Fava, N.D.M.N., Lamon, A.W., Fernandez-Ibañez, P., Byrne, J.A., Sabogal-Paz, L.P.: Household water purification system comprising cartridge filtration, UVC disinfection and chlorination to treat turbid raw water. J. Water Process. Eng. 43, 1–10 (2021)

    Article  Google Scholar 

  44. Madilonga, R.T., Edokpayi, J.N., Volenzo, E.T., Durowoju, O.S., Odiyo, J.O.: Water quality assessment and evaluation of human health risk in Mutangwi River, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 18, 6765 (2021). https://doi.org/10.3390/ijerph18136765

    Article  CAS  Google Scholar 

  45. Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Rahisuddin, Changani, F., Yousef, M., Ahmadi, S., Vambol, V.: Chlorination disinfection by-products in municipal drinking water - A review. J. Clean. Prod. 273: 1-13(2020)

    Google Scholar 

  46. Meade, R.D., Murray, A.L., Mittelman, A.M., Justine Rayner, J., Lantagne, D.S.: Accuracy, precision, cost, and acceptability of silver testing methods in ceramic filter manufacturing facilities. J. Water Health, 15(1): 72-82(2017)

    Google Scholar 

  47. Meierhofer, R., Bänziger, C., Deppeler, S., Kunwar, B.M., Bhatta, M.: From water source to tap of ceramic filters—Factors that influence water quality between collection and consumption in rural households in Nepal. Int. J. Environ. Res. Public Health 15, 1–14 (2018)

    Article  Google Scholar 

  48. Mellor, J.E., Kallman, E., Oyanedel-Craver, V., Smith, J.A.: Comparison of three household water treatment technologies in San Mateo Ixtatan, Guatemala. J. Environ. Eng. 141(5), 1–23 (2015)

    Article  CAS  Google Scholar 

  49. Mittelman, A.M., Lantagne, D.S., Rayner, J., Pennell, K.D.: Silver dissolution and release from ceramic water filters. Environ. Sci. Technol. 49, 8515–8522 (2015)

    Article  CAS  Google Scholar 

  50. Mona, S., Van Halem, D., Medema, G.: Virus removal by ceramic pot filter disks: Effect of biofilm growth and surface cleaning, pp 1–7(2020)

    Google Scholar 

  51. Moraes, L.T.D., Paiva, E.M., Rodrigues, S.F., Rangel, J.H.G., Oliveira, M.M.: Development of nickel and silver ceramic filters supported on K10 montmorillonite clay for water disinfection. Cerâmica 66, 474–482 (2020)

    Article  Google Scholar 

  52. Moropeng, R.C., Budeli, P., Momba, M.N.B.: An integrated approach to hygiene, sanitation, and storage practices for improving microbial quality of drinking water treated at point of use: A case study in Makwane Village, South Africa. Int. J. Environ. Res. Public Health 18(12), 1–15 (2021)

    Article  Google Scholar 

  53. Moropeng, R. C., Momba, M.N.B.: Assessing the sustainability and acceptance rate of cost-effective household water treatment systems in rural communities of Makwane Village, South Africa. Crystals 10, 1–16 (2020)

    Google Scholar 

  54. Mukaratirwa-Muchanyereyi, N., Tigere, W., Hokonya, N., Gusha, C., Guyo, U., Nyoni, S.: Preparation and performance characterization of ceramic/silver nanoparticle composite in water purification. Int. J. Appl. Ceram. Technol. 17(3), 1522–1530 (2020)

    Article  CAS  Google Scholar 

  55. Nair, C.S., Kani, K.M.: Evaluating the performance of locally made ceramic filters for household water treatment. Int. J. Res. Technol. Stud. 4(6), 40–45 (2017)

    Google Scholar 

  56. Ndebele, N., Edokpayi, J.N., Odiyo, J.O., Smith, J.A.: Field investigation and economic benefit of a novel method of silver application to ceramic water filters for point-of-use water treatment in low-income settings. Water 13(3), 1–18 (2021)

    Article  Google Scholar 

  57. Ngasala, T.M., Masten, S.J., Cohen, C., Ravitz, D., Mwita, E.J.: Implementation of point-of-use water treatment methods in a rural Tanzanian community: A case study. J. Water, Sanit.Ion Hyg. Dev 10(4), 1012–1018 (2020)

    Article  Google Scholar 

  58. Normal, I. N.: The financial variables of water filter pot mainly raw material darmasaba clay in Btikk-Indonesia. Int. J. Econ. Financ. Issues 10:111-124(2020)

    Google Scholar 

  59. Nunnelley, K., Smith, J.A., Smith, M.Y., Samie, A.: A new method for nanosilver application in ceramic water filters. World Environ. Water Resour. Congr. 2016, 292–298 (2016)

    Google Scholar 

  60. Okotch, B., Elsimat, E.G.A., Gonzalez, L., Heeger, J., Dodos, J.: Are ceramic water filters effective in preventing diarrhoea and acute malnutrition among under-five children in Sudan? Waterlines 39, 116–132 (2020)

    Article  Google Scholar 

  61. Omona, S., Malinga, G.M., Opoke, R., Openy, G., Opiro, R.: Prevalence of diarrhoea and associated risk factors among children under five years old in Pader District, northern Uganda. Boston Med. Cent. Infect. Dis. 20(37), 1–9 (2020)

    Google Scholar 

  62. Organization, W.H.: Safer water, better health, (2019)

    Google Scholar 

  63. Oskam, M.J., Pavlova, M., Hongoro, C., Groot, W.: Socio-economic inequalities in access to drinking water among inhabitants of informal settlements in South Africa. Int. J. Environ. Res. Public Health 18, 1–19 (2021)

    Article  Google Scholar 

  64. Potters Without Boarders (PWB).: Ceramic water filter program. (2019). https://www.pottersforpeace.org/ceramic-water-filter-project. Accessed 11 Oct 2022

  65. PureMadi.: Dertig Facility, (2021). www.puremadi.org

  66. Ramírez-Castillo, F.Y., Loera-Muro, A., Jacques, M., Garneau, P., Avelar-González, F.J., Harel, J.: Waterborne pathogens: Detection methods and challenges. Pathogens 4(2), 307–334 (2015)

    Article  Google Scholar 

  67. Ray, I., Smith, K.R.: Towards safe drinking water and clean cooking for all. Lancet Glob. Health 9, e361–e365 (2021)

    Article  CAS  Google Scholar 

  68. Ren, D., Smith, J.A.: Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment. Environ. Sci. Technol. 47, 3825–3832 (2013)

    Article  CAS  Google Scholar 

  69. Resource Development International-Combodia (RDIC).: Ceramic water filters. (2016). https://rdic.org/water-filtration-system/. Accessed 11 Oct 2022

  70. Rivera, R.: Household water treatment options in developing countries: CDC Ceramic filtration, pp 1–2(2008)

    Google Scholar 

  71. Rivera-Sánchez, S.P., Ocampo-Ibáñez, I.D., Silva-Leal, J.A., Flórez-Elvira, L.J., Castaño-Hincapié, A.V., Dávila-Estupiñan, A., Martínez-Rivera, J.I., Pérez-Vidal, A.: A novel filtration system based on ceramic silver-impregnated pot filter combined with adsorption processes to remove waterborne bacteria. Sci. Rep. 10, 1–7 (2020)

    Article  Google Scholar 

  72. Salsali, H., McBean, E., Brunsting, J.: Virus removal efficiency of Cambodian ceramic pot water purifiers. J. Water Health 9, 306–311 (2011)

    Article  CAS  Google Scholar 

  73. Shepard, Z.: Performance of silver nanoparticle-impregnated ceramic water filters. University of Rhode Island, (2020)

    Google Scholar 

  74. Simonis, J.J., Basson, A.K.: Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria. Phys. Chem. Earth, Parts A/B/C 50–52, 269–276 (2012)

    Article  Google Scholar 

  75. Singh, R., Rento, C., Son, V., Turner, S., Smith, J.A.: Optimization of silver ion release from silver-ceramic porous media for household level water purification. Water 11(4), 1–17 (2019)

    Article  Google Scholar 

  76. Sobsey, M.D., Stauber, C.E., Casanova, L.M., Brown, J.M., Elliott, M.A.: Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ. Sci. Technol. 42, 4261–4267 (2008)

    Article  CAS  Google Scholar 

  77. Soliman, M.Y.M., van Halem, D., Medema, G.: Virus removal by ceramic pot filter disks: Effect of biofilm growth and surface cleaning. Int. J. Hyg. Environ. Health 224, 1–8 (2020)

    Article  Google Scholar 

  78. United Nations International Children’s Emergency Fund (UNICEF).: Household water treatment filters product guide, (2020)

    Google Scholar 

  79. United States Environmental Protection Agency (USEPA).: Protocol for testing microbiological water purifiers. Environmental Protection Agency, Report of Task Force, revised April, (1987)

    Google Scholar 

  80. van der Laan, H., van Halem, D., Smeets, P.W.M.H., Soppe, A.I.A., Kroesbergen, J., Wubbels, G., Nederstigt, J., Gensburger, I., Heijman, S.G.J.: Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long-term experiment. Water Res. 51, 47–54 (2014)

    Article  Google Scholar 

  81. van Halem, D., Heijman, S., Soppe, A., van Dijk, J., Amy, G.: Ceramic silver-impregnated pot filters for household drinking water treatment in developing countries: material characterization and performance study. Water Sci. Technol.: Water Supply 7, 9–17 (2007)

    Google Scholar 

  82. Venis, R.A., Basu, O.D.: Mechanisms and efficacy of disinfection in ceramic water filters: A critical review. Crit. Rev. Environ. Sci. Technol. 51(24), 2934–2936 (2021)

    Article  Google Scholar 

  83. WILLIAMS, F.: Experiences with ceramic pot water filtration systems in Uganda: A case study of the health and social impacts of a market-based approach. University of Michigan, Master of Landscape Architecture (2020)

    Google Scholar 

  84. World Health Organization (WHO): Guidelines for drinking-water quality. World Health Organization: Geneva, Switzerland 216, 303–304 (2011)

    Google Scholar 

  85. World Health Organization (WHO).: Water and sanitation for health facility improvement tool (WASH FIT): A practical guide for improving quality of care through water, sanitation, and hygiene in health care facilities. (2017)

    Google Scholar 

  86. World Health Organization (WHO): Safer water, better health. World Health Organization, Geneva, Switzerland (2019)

    Google Scholar 

  87. World Health Organization/United Nations International Children’s Emergency Fund (WHO/UNICEF) Joint water supply and sanitation monitoring programme.: Progress on sanitation and drinking water: 2015 update and MDG assessment. World Health Organization, (2021)

    Google Scholar 

  88. Yang, H., Xu, S., Chitwood, D.E., Wang, Y.: Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities. Front. Environ. Sci. Eng. 14, 1–10 (2020)

    Article  Google Scholar 

  89. Zaman, S., Begum, A., Rabbani, K.S., Bari, L.: Low cost and sustainable surface water purification methods using Moringa seeds and scallop powder followed by bio-sand filtration. Water Science & Technology: Water Supply 17(1), 125–137 (2017)

    CAS  Google Scholar 

  90. Zinn, C., Bailey, R., Barkley, N., Walsh, M.R., Hynes, A., Coleman, T., Savic, G., Soltis, K., Primm, S., Haque, U.: How are water treatment technologies used in developing countries and which are the most effective? An implication to improve global health. J. Public Health Emerg. 2(25), 1–14 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Nosa Edokpayi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edokpayi, J.N., Mannzhi, M.P., Sadiki, M.P., Tshidumo, N.M. (2023). Silver Applied Ceramic Filters as Point-of-Use Water Treatment Device. In: Vithanage, M., Lazzara, G., Rajapaksha, A.U. (eds) Clay Composites. Advances in Material Research and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2544-5_22

Download citation

Publish with us

Policies and ethics